采用船型优化方法就超大型集装箱船10000TEU的能效设计指数(EEDI)进行优化。文中以降低对主机功率的需求、提高能效设计水平为目标,优化该超大型集装箱船的阻力性能。优化时利用平移法和径向基函数方法进行船体曲面重构,并分别采用基于Rankine源非线性势流理论和边界层动量积分计算兴波阻力和摩擦阻力,最后同时使用遗传算法(NSGA-Ⅱ)和序列二次规划算法(NLPQL)在设计空间中探索满足约束条件的阻力最优船型。结果表明,通过该优化方法获得的最优船型,其能效设计指数优化程度明显,能够满足现阶段IMO对新造集装箱船计及折减系数后的强制要求。
The Energy Efficiency Design Index (EEDI) of the 10000TEU Ultra Large Container Ship is reduced by ship hull-form optimization method. The drag of the ULCS at design speed is optimized in order to lower the demand for main engine power and improve the energy efficiency design level. During the process of resistance optimization, radial basis function and shifting methods are utilized to modify the hull surface; the calm-water drag is evaluated by the sum of the wave drag predicted by Rankine source method and the friction drag given by boundary layer momentum integral method. Finally, the optimum hull form is obtained via using genetic algorithm (NSGA-II) and sequential quadratic programming (NLPQL) simultaneously. Results show that the EEDI of the optimal hull form obtained by the above optimization approach can be reduced considerably and meet the required EEDI value considering the reduction factor.
2017,39(5): 60-64 收稿日期:2016-09-12
DOI:10.3404/j.issn.1672-7619.2017.05.012
分类号:U661.3
基金项目:教育部重大专项资助项目(GKZY010004)
作者简介:王刚成(1991-),男,硕士研究生,主要研究方向为绿色智能船舶技术
参考文献:
[1] 李碧英. 航运业节能减排现状及其低碳发展的途径[J]. 工程研究:跨学科视野中的工程, 2012, 4(3):260-269. LI Bi-ying. The status quo of energy saving and emission reduction in shipping industry and its approach to low-carbon development[J]. Journal of Engineering Studies, 2012, 4(3):260-269.
[2] ICCT. The energy efficiency design index (EEDI) for new ships[M]//ICCT. 2011:1-9.
[3] 张云浩. 基于EEDI的集装箱船技术要素研究[D]. 武汉:武汉理工大学, 2013.
[4] 刘飞. EEDI对船舶总体设计影响分析研究[D]. 大连:大连理工大学, 2011. LIU Fei. The research of EEDI impact on the basic ship design[D]. Dalian:Dalian University of Technology, 2011.
[5] 刘亮. 船舶能效设计中若干耐波性影响因素研究[D]. 哈尔滨:哈尔滨工程大学, 2010.
[6] 封培元, 马宁, 顾解忡. 基于船机桨匹配和波浪统计的船舶失速系数分析[J]. 上海交通大学学报, 2012(8):1248-1253. FENG Pei-yuan, MA Ning, GU Xie-chong. Analysis of the ship speed loss coefficient based on hull-engine-propeller matching and wave statistics[J]. Journal of Shanghai Jiao Tong University. 2012(8):1248-1253.
[7] 颜林. 国内船舶能效指数与CO2排放基线实船研究[D]. 武汉:武汉理工大学, 2011. YAN Lin. Energy efficiency design index and CO2 emission baseline based on domestic full-scale ships[D]. Wuhan:Wuhan University of Technology, 2011.
[8] 程红蓉, 刘晓东, 冯佰威. 多目标优化在船型设计中的应用研究[J]. 中国造船, 2014:76-82. CHENG Hong-rong, LIU Xiao-dong, FENG Bai-wei. Study on multidisciplinary optimization method for hull forms design[J]. Shipbuilding of China, 2014:76-82.
[9] KIM H. Multi-objective optimization for ship hull form design[D]. George Mason University, 2009.
[10] DE BOER A, VAN DER SCHOOT M S, Bijl H. Mesh deformation based on radial basis function interpolation[J]. Computers & structures, 2007, 85(11):784-795.
[11] 程天柱, 石仲堃. 兴波阻力理论及其在船型设计中的应用[M]. 武汉:华中工学院出版社, 1987.
[12] 钱建魁, 毛筱菲, 王孝义. 基于CFD和响应面方法的最小阻力船型自动优化[J]. 船舶力学, 2012, 16(1):36-43. QIAN Jian-kui, MAO Xiao-Fei, WANG Xiao-yi. Ship hull automated optimization of minimum resistance via CFD and RSM technique[J]. Journal of Ship Mechanics, 2012, 16(1):36-43.
[13] TELSTE J G, REED A M. Calculation of transom stern flows[C]//Proceedings of the Sixth International Conference on Numerical Ship Hydrodynamics, 1994:78-92.