为研究泡沫铝夹芯结构各组成部分在中、高速弹体侵彻下的抗侵彻性能及破坏机理,分别开展泡沫铝芯材(I)、前面板与芯材(II)、芯材与后面板(III)以及泡沫铝夹芯结构(IV)4种靶板在中、高速弹体侵彻下的弹道冲击试验。分析夹芯结构的破坏模式、侵彻过程和抗弹性能。结果表明:在中、高速弹体侵彻下,泡沫铝芯材发生了胞壁的绝热剪切和撕裂破坏,存在前面板的泡沫铝芯材还发生了胞壁压实坍塌;前面板发生绝热剪切破坏,弹速较低时,弹孔周围将产生明显的碟形弯曲变形,板厚较大、弹速较高时弹孔边缘存在开坑唇边;后面板发生了局部碟形弯曲-贯穿破坏,板厚较小时,后面板还产生了花瓣开裂。泡沫铝芯材吸能较小,泡沫铝和面板组成的夹芯结构吸能明显提高。面板的存在提高了靶板的抗弹性能,前面板对靶板的抗弹性能影响大于后面板的影响。同一种形式的靶板在高速弹体侵彻下的抗弹性能明显优于中速弹体侵彻下的抗弹性能。
In order to investigate the anti-penetration performance and failure modes of aluminum foam sandwich structure under medium and high velocity bullet impact, we devised 4 kinds of target plates and carried out series ballistic tests on them. There are aluminum foam (I), front facet and aluminum foam (II), aluminum foam and back facet (III) and aluminum foam sandwich (IV). The experiments result indicated that the core foam failed in the mode of through-thickness shearing and tearing when the velocity impact is medium or high. With front facet plate, the aluminum core damaged with crushing. The failure mode of the front face sheet was shear plugging. Around the bullet hole, we can observed obvious disc deformation when the velocity is low and lip of steel in the crevasse when the velocity is high. The back face sheet failed in local disc deformation-shear plugging and crevasse cracking occurred when the plate is thin. While shear plugging only occurred in the front face sheet under high velocity impact. The energy absorbed by aluminum foam plate is small while the energy absorbed by sandwich structure improved greatly. With face sheet, the target plate ability of anti-penetration enhance sharply. The front sheet had great influence on the anti-penetration performance than the back sheet. Every kind of sandwich anti-penetration performance under high velocity is significant improved than that performed under medium velocity.
2017,39(6): 12-17 收稿日期:2016-07-25
DOI:10.3404/j.issn.1672-7619.2017.06.003
分类号:O344.7
基金项目:国家自然科学基金资助项目(51209211,51479204)
作者简介:方志威(1992-),男,硕士研究生,研究方向为舰船复合防护装甲。
参考文献:
[1] GIBSON L J, ASHBY M F. 多孔固体结构与性能(第2版)[M]. 刘培生译. 北京:清华大学出版社, 2003.
[2] M PERONI, G SOLOMOS, V PIZZNATO. Impact behavior testing of aluminum foam[J]. International Journal of Impact Engineering, 2013:74-83.
[3] Jae Ung Cho, Soon Jik Hong, Sang Kyo Lee, et al. Impact fracture behavior at material of aluminum foam[J]. Material Science and Engineering A, 2012:250-258.
[4] ZHU Feng, LU Guo-xing, etc. Plastic deformation, failure and energy absorption of sandwich structures with metallic cellular cores[J]. International Journal of Protective Structures, 2010, 1(4):537-541.
[5] H ZHAO, I ELNASRI, Y GIRARD. Perforation of aluminum foam sandwich panels under impact loading-an experimental study[J]. International Journal of Impact Engineering, 2007, 34:1246-1257.
[6] ZU Guo-yin, LU Ri-huan, etc. Three-point bending behavior of aluminum foam sandwich with steel panel[J]. Transactions of Nonferrous Metal Society of China, 2013, 23:2491-2495.
[7] WANG Ning-zhen, CHEN Xiang, etc. Three-point bending performance of a new aluminum foam composite structure[J]. Transactions of Nonferrous Metal Society of China 2016, 26:359-368.
[8] CHENG S L, ZHAO X Y, XIN Y J, et al. Quasi-static localized indentation tests on integrated sandwich panel of aluminum foam and epoxy resin[J]. Composite Structures, 2015, 129:157-164.
[9] 谌河水, 赵恒义, 张明华. 泡沫铝芯体夹层板的冲击力学性能研究[J]. 宁波大学学报, 2007(3):118-121.
[10] 李志斌, 卢芳云. 泡沫铝夹芯板压入和侵彻性能的实验研究[J]. 振动与冲击,2015, 34 (4):1-5.
[11] KAPIL MOHAN, TICK HON YIP, SRIDHAR IDAPALAPATI, et al. Impact response of aluminum foam core sandwich structures[J]. Material Science and Engineering A. 2011:94-101.
[12] 祖国胤, 刘佳, 李小兵, 等. 泡沫铝夹芯板低速冲击性能研究[J]. 东北大学学报(自然科学版), 2014, 35 (11):1583-1587.
[13] VAIDYA UK, PILLAY S, et al. Impact and post-impact vibration response of protective metal foam composite sandwich plates[J]. Materials Science and Engineering:A, 2006, 428(1-2):59-66.
[14] 牛卫晶. 冲击载荷下泡沫铝夹芯防护结构的侵彻动力学行为研究[D]. 太原:太原理工大学, 2015.
[15] 宋延泽, 王志华, 赵隆茂, 等. 撞击载荷下泡沫铝夹层板的动力响应[J]. 爆炸与冲击, 2010, 30:01-07.
[16] 钟云岭, 郭香华, 张庆明. 冲击波在泡沫铝复合结构中的衰减特性理论分析[J]. 兵工学报, 2014, 35(2):322-327.
[17] 杨飞, 王志华, 赵隆茂. 泡沫铝夹芯板抗侵彻性能的数值研究[J]. 科学技术与工程, 2010(11):3377-3383.
[18] 韩守红, 吕振华. 泡沫铝夹层结构抗爆炸性能仿真分析及优化[J]. 兵工学报, 2010, 31(11):1468-1474.