开孔分布是影响空腔流动的一个重要因素。为了对开孔空腔流动有更深的认识,采用大涡模拟(LES)的方法,以Suboff艇体母线建立二维模型,研究4种开孔分布对空腔流动阻力,频谱特性及内外流交换的影响。对计算结果的分析表明,由于艇体表面的压力分布不同,孔附近产生纵向压力差,促使空腔内外流动交换,增加主艇体首尾压差阻力,进而使得总阻力增大。计算结果表明艇体阻力增加与内外流交换的密切相关,开孔位于中部时总阻力增量最小,内外流增量最小,开孔均匀分布时引起内外流流动交换剧烈,阻力增量最大,而且开孔引起总阻力波动幅值增加,频率分布特性发生相应的改变,开孔使得大幅波动频带变宽,可以预测噪声强度增加,频带变宽。
Cavity flow depends greatly on hole distribution.To make hole cavity flow more clear, a large eddy simulation (LES) method is used to establish a two-dimensional model of SUBOFF hull busbar to study the effect of four kinds of hole distribution on cavity flow resistance, spectral characteristics and internal and external flow exchange in this paper. The analysis of the results shows that, due to the different pressure distribution on the surface of the hull, the longitudinal pressure difference is generated in the vicinity of the hole, which promotes the exchange of the inside and the outside of the cavity and increases the head-end pressure difference resistance of the main body. The results show that the increase of hull resistance is closely related to the exchange of internal and external flow. When the opening is in the middle, the total resistance increase is the smallest, the increment of internal and external flow is the smallest, and the flow of the internal and external flow is intense and the resistance is the largest. The opening of the hole causes the total resistance fluctuation amplitude to increase, the frequency distribution characteristic changes accordingly, the opening makes the large fluctuation frequency band widens, can predict the noise intensity increases, the frequency band widens.
2017,39(6): 48-52 收稿日期:2017-02-27
DOI:10.3404/j.issn.1672-7619.2017.06.010
分类号:O352
作者简介:张航(1996-),男,本科生,研究方向为舰船与海洋工程。
参考文献:
[1] 曹志敏, 杜阳华. 潜艇武器系统综合仿真系统及关键技术[J]. 计算机仿真, 2007, 24(6):31-37.
[2] 赖焕新, 周邵萍, 苏永升, 等. 空腔流动的大涡模拟及气动噪声控制[J]. 工程热物理学报, 2008(2):228-232.
[3] 邬明. 带流水孔潜艇流噪声特性分析[J]. 四川兵工学报, 2015(10):27-31.
[4] 陈灿, 吴方良, 李环, 等. 不可压缩空腔流振荡模式和声学特性研究[J]. 水动力学研究与进展(A辑), 2015(3):272-278.
[5] 孟生, 张宇文, 王艳峰. 潜艇流水孔流噪声特性研究[J]. 计算机仿真, 2011(7):57-62.
[6] 张楠, 沈泓萃, 姚惠之, 等. 带流水孔潜体流场数值模拟[J]. 船舶力学, 2004(1):1-11.
[7] ROSSITER J E. Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[R]. London, UK:Aeronautical Research Council, 1966.
[8] 涂海文, 孙江龙. 基于CFD的潜艇阻力及流场数值计算[J]. 舰船科学技术, 2012,34(3):19-25.
[9] 李霖, 张志国, 王先洲, 等. 低雷诺数圆柱绕流的大涡模拟分析[J]. 舰船科学技术, 2013, 35(1):22-26.