由于Mie-Grüneisen状态方程形式比较复杂,给界面的处理带来很大难度。本文通过对Euler方程做分离变量和引入质量分数,完成了Mie-Grüneisen状态方程下的多介质可压缩流动的数值模拟,使计算过程得到简化,并通过算例验证了该方法的可靠性。在多项式形式的Mie-Grüneisen状态方程下,利用该方法模拟了球形炸药在水中爆炸后,气体和水相互作用的近场情况。在计算模型中引入的气体质量分数,很好反映了流场中不同区域内气体、水及水气并存3种不同的状态。
Due to the complicated form of Mie-Grüneisen equation of state, it is difficult to handle the interface well. We separate several variables from the Euler equation and introduce mass fractions, manage to achieve the numerical simulation of multi-medium compressible flows under Mie-Grüneisen equation of state, while the process of calculation is simplified here. The approach was verified well in our case. Then under the polynomial equation of state, which is a general form of Mie-Grüneisen equation of state, we used this approach to simulate the underwater explosion of a sphere bomb, and obtained the near-field character of gas-water interaction. By introducing the mass fraction, the three states of different region, which include gas, water and gas-water mixture, are revealed clearly.
2017,39(7): 29-33 收稿日期:2016-07-12
DOI:10.3404/j.issn.1672-7649.2017.07.006
分类号:O382.1
基金项目:广东青年创新人才类资助项目(2014KQNCX086);渔船渔港设施装备标准化与安全保障能力研究资助项目(GDOU2016050258)
作者简介:吴宗铎(1984-),男,博士,讲师,主要从事激波间断及水下爆炸冲击波数值模拟
参考文献:
[1] COLE R. H. Underwater explosions[M]. New York: Dover Publications, INC. 1965.
[2] ZAMYSHLYAYEV B V, YAKOVLEV Y S. Dynamic loads in underwater explosion, AD-757183[R]. Naval Intelligence Support Center, 1978.
[3] 杨振, 沈晓乐. 爆破战斗部水中兵器爆炸威力评定方法研究[J]. 爆破, 2015, 32(2): 51–53.YANG Zhen, SHEN Xiao-le. Research on evaluation method of underwater blast brisance of weapon's explosive[J]. Blasting, 2015, 32(2): 51–53.
[4] 鲁忠宝, 胡宏伟, 刘锐, 等. 典型装药水下爆炸的殉爆规律研究[J]. 鱼雷技术, 2014, 22(3): 230–235.LU Zhong-bao, HU Hong-wei, LIU Riu, et al. Research on law of sympathetic detonation of typical charge[J]. Torpedo Technology, 2014, 22(3): 230–235.
[5] 张社荣, 李宏璧, 王高辉, 等. 水下爆炸冲击波数值模拟的网格尺寸确定方法[J]. 振动与冲击, 2015, 34(8): 93–100.ZHANG She-rong, LI Hong-bi, WANG Gao-hui, et al. A method to determine mesh size in numerical simulation of shock wave of underwater explosion[J]. Journal of Vibration and Shock, 2015, 34(8): 93–100.
[6] 姜涛, 王桂芹, 詹发民, 等. 基于AUTODYN的潜艇典型舱段水中爆炸冲击损伤研究[J]. 爆破器材, 2015, 44(6): 61–64.JIANG Tao, WANG Gui-qin, ZHAN Fa-min, et al. Impact damage analysis of typical submarine compartment subjected to underwater blasting based on AUTODYN[J]. Explosive Materials, 2015, 44(6): 61–64.
[7] 梅群, 侯中华, 朱俊锋, 等. 水下爆炸冲击波压力时程的数值模拟[J]. 河南科技大学学报(自然科学版), 2010, 31(4): 57–59MEI Qun, HOU Zhong-Hua, ZHU Jun-Feng, et al. Numerical simulation of underwater explosion shock wave[J]. Journal of Henan University of Science and Technology: Natural Science, 2010, 31(4): 57–59.
[8] 贾则, 权琳, 张姝红, 等. 舰艇结构在水中兵器静态爆炸作用下的冲击响应[J]. 舰船科学技术, 2015, 37(3): 55–58.JIA Ze, QUAN Lin, ZHANG Shu-hong, et al. The research in shock response of warship under static explosion by underwater weapon[J]. Ship Science and Technology, 2015, 37(3): 55–58.
[9] 袁建红, 朱锡, 张振华. 水下爆炸载荷数值模拟方法[J]. 舰船科学技术, 2011, 33(9): 18–23.YUAN Jian-hong, ZHU Xi, ZHANG Zhen-hua. Numerical simulaton method study of underwater explosion load[J]. Ship Science and Technology, 2011, 33(9): 18–23.
[10] ZHANG A-man, YANG Wen-shan, YAO Xiong-liang. Numerical simulation of underwater contact explosion[J]. Applied Ocean Research, 2012, 34(1): 10–20.
[11] A. DARAMIZADEH a, M. R. ANSARI. Numerical simulation of underwater explosion near air–water free surface using a five-equation reduced model[J]. Ocean Engineering, 2015, 110(12): 25–35.
[12] 张宝平, 张庆明, 黄风雷. 爆轰物理学[M]. 北京: 兵器工业出版社, 2006.