对舰船水下远场声场的声辐射热区进行识别可为后续降噪工作指明方向。舰船外壳表面振动的不同位置之间具有复杂相位关系,其近场声场和远场声场有很大不同,导致使用表面有功声强进行远场声辐射热区定位并不准确。本文尝试使用声能量表面贡献方法对某巡逻艇船壳表面的远场声辐射热区进行识别。表面贡献方法在振动结构表面构造了一个和位置相关的正值,表示对应小块面积对声场的绝对贡献。使用表面贡献方法,本文准确地标示出船壳表面的远场声辐射热区,这一尝试展现了表面贡献方法在舰船降噪中的应用前景。
The complex phase relationship that exists in the hull surface's vibration leads to a big difference between near-field and far-field of the acoustic radiation and inaccuracy of the identification of far-field sound radiation hotspot using surface active intensity. This work has tried to identify the hull surface radiation hotspot to far-field of a patrol ship using the surface contribution method of acoustic energy. For the surface contribution method, a position-related positive value is created at the surface of vibrating structure to represent absolute contribution of this piece of surface to acoustic radiation in the far-field. Based on the surface contribution method, the hotspot contributed to far-field is identified on the surface precisely, and it shows the possibility of applying the surface contribution method to noise control of ships.
2017,39(7): 34-38 收稿日期:2016-08-26
DOI:10.3404/j.issn.1672-7649.2017.07.007
分类号:U661.44
基金项目:水下测控技术重点实验室延伸性发展基金资助项目(YS0C261506)
作者简介:刘正浩(1989-),男,硕士,助理工程师,研究方向为船舶噪声分析与控制
参考文献:
[1] JUNGER M C, FEIT D. Sound, structures, and their interaction (2nd edition)[M]. Cambridge Ma Mit Press P, 1986, -1(4).
[2] WILLIAMS E G. Supersonic acoustic intensity on planar sources[J]. Acoustical Society of America Journal, 1998, 104(5): 2845–2850.
[3] 姜哲, 郭骅. 声强的有旋性与表面声强[J]. 声学学报, 1991(5): 330–337.
[4] 姜哲, 郭骅. 声场中负声强探讨[J]. 声学学报, 1992(2): 122–128.
[5] 姜哲. 声场中声能量与传递[J]. 振动工程学报, 1999(1): 126–132.
[6] WILLIAMS E G. Supersonic acoustic intensity[J]. Journal of the Acoustical Society of America, 1995, 97(1): 121–127.
[7] FERNANDEZGRANDE E, JACOBSEN F, LECLÈRE Q. Direct formulation of the supersonic acoustic intensity in space domain. [J]. Journal of the Acoustical Society of America, 2012, 131(1): 186–93.
[8] MAGALHÃES M B S, TENENBAUM R A. Supersonic acoustic intensity for arbitrarily shaped sources[J]. Acta Acustica United with Acustica, 2006, 92(2): 189–201.
[9] JUNIOR C A C, TENENBAUM R A. Useful intensity: a technique to identify radiating region on arbitrarily shaped surfaces[J]. Journal of Sound & Vibration, 2013, 332(6): 1567–1584.
[10] BORGIOTTI G V. The power radiated by a vibrating body in an acoustic fluid and its determination from boundary measurements[J]. Journal of the Acoustical Society of America, 1990, 88(4): 1884–1893.
[11] PHOTIADIS D M. The relationship of singular value decomposition to wave‐vector filtering in sound radiation problems[J]. Journal of the Acoustical Society of America, 1990, 88(88): 1152–1159.
[12] MARBURG S, LÖSCHE E, PETERS H, et al. Surface contributions to radiated sound power. [J]. Journal of the Acoustical Society of America, 2013, 133(6): 3700–3705.
[13] MAIDANIK G. Response of ribbed panels to reverberant acoustic fields[J]. Journal of the Acoustical Society of America, 1962, 34(6): 809–826.