水下潜器在航行过程中,主要使用声呐来探测敌方舰艇以及自身位置。主声呐一般安放在潜艇首部位置,可分为主动声呐与被动声呐。在探测目标时,噪声是2种声呐系统都必须克服的干扰因素。针对自噪声中的流噪声,首先使用LES模型对水下潜器的外流场进行仿真计算。在获得流场中的脉动压力分布后,将其导入基于Lighthill声类比理论的声学软件ACTRAN中进行声场仿真计算,实现了对水下潜器首部声基阵区流噪声的数值预报。研究了航速、共形阵的安装位置和基阵单元安装面形状对声基阵区流噪声传播的影响。结果表明:航速越大,流噪声越大;增大声呐安装面与导流罩的距离以及使用较光滑的安装面,可以减小声基阵区流噪声的大小。
Underwater vehicle use sonar system to detect the enemy ship as well as its own position during its navigation. The main sonar system which can be divided into active sonar and passive sonar is usually placed in the bow. However, noise is an important interference factor that both systems must overcome. In order to research flow-induced noise in the bow, the LES model was applied to simulate flow field out of the underwater vehicle to get fluctuating pressure. Then the fluctuating pressure was import into ACTRAN-a software based on Lighthill's acoustic analogy theory- to simulate the sound field in the bow. Speed, position of the array and shape of the array carrier were studied to reveal their influences on the propagation of flow-induced noise. The results show that:the higher speed, the bigger of flow-induced noise. Furthermore, flow-induced noise can be diminished by increasing the distance between sonar array and dome and using relative smooth installion surface.
2017,39(7): 48-53 收稿日期:2016-10-25
DOI:10.3404/j.issn.1672-7649.2017.07.010
分类号:U661.39
作者简介:樊林旭(1993-),男,硕士研究生,研究方向为管系振动与流噪声
参考文献:
[1] WAITE A D. 实用声呐工程. 第三版[M]. 王德石译. 北京: 电子工业出版社, 2004.
[2] 缪旭弘, 王振全. 舰艇水下噪声控制技术现状及发展对策[C]//中国造船工程学会船舶力学学术委员会水下噪声学组. 第十届船舶水下噪声学术讨论会论文集, 2005: 5.
[3] 张楠, 沈泓萃, 姚惠之. 潜艇阻力与流场的数值模型与验证及艇型的数值优化研究[J]. 船舶力学, 2005, 9(1): 1–13.
[4] 涂海文, 孙江龙. 基于CFD的潜艇阻力及流场数值计算[J]. 舰船科学技术, 2012, 34(3): 1–13.TU Hai-wen, SUN Jiang-long, Numerical analysis of resistance and flow field of submarine based on CFD[J]. Ship Science and Technology, 2012, 34(3): 1–13.
[5] 张楠, 沈泓萃, 姚惠之. 用雷诺应力模型预报不同雷诺数下的潜艇绕流[J]. 船舶力学, 2009, 13(5): 688–696.
[6] 赵鹏伟, 卢晓平, 孙玉明. 基于潜艇模型尾流湍流强度和耗散率的CFD模拟[J]. 中国舰船研究, 2014, 9(3): 43–56.
[7] 俞强, 魏子凡, 杨松林, 等. 基于CFD不同AUV艇体阻力性能研究[J]. 船海工程, 2014, 43(2): 177–181.
[8] LIGHTHILL M. J. On sound generated aerodynamically. General theory[J]. Proc Royal Soc London, Ser A, 1952, 211: 564–587.
[9] LIGHTHILL M. J. On sound generated aerodynamically. Turbulence as a source of sound[J]. Proc Royal Soc London, Ser A, 1954, 222: 1–25.
[10] 俞孟萨, 朱正道. 集成统计能量法计算声呐自噪声水动力噪声分量[J]. 船舶力学, 2007, 02: 273–283.
[11] 卢云涛. 全附体潜艇的流场和流噪声的数值研究[D]. 上海: 上海交通大学, 2008.
[12] ZHANG N, SHEN H C, YAO H Z. Numerical simulation of cavity flow induced noise by LES and FW-Hacoustic analogy [J]. Journal of Hydrodynamics(Ser. B), 2010, 22(Supp 1): 242–247.
[13] 刘明静, 马运义. 潜艇艏部声呐流噪声计算方法研究[J]. 船海工程, 2009, 38(5): 46–49.
[14] 张平, 张宇文, 刘维, 等. 典型工况下回转体流噪声特性实验对比探究[J]. 计算机仿真, 2012, 08: 26–30.ZHANG Ping, ZHANG Yu-wen, LIU Wei, et al, Study on flow noise characteristics of symmetrical model under typical working conditions[J]. Computer Simulations, 2012, 08: 26–30.