建立不同材料和不同衬套厚度的水润滑阶梯腔动静压尾轴承三维实体模型,并用Workbench软件进行有限元力学性能分析。结果表明:轴承材料和衬套厚度对尾轴承的力学性能有比较大的影响。当尾轴承的外圈材料是45#钢,衬套材料为硬橡胶时,轴承具有较好的柔性和最优的力学性能;在设计尾轴承结构时,橡胶层厚度选为20 mm,则不仅具有较好的力学性能,而且还能够节省成本。
Setting up different material and different thickness of the liner of water lubricated ladder dynamic and static pressure cavity stern bearing three-dimensional model, and analyzing mechanics performance by Workbench software. The results show that bearing material and thickness of the liner have an influences on the stern bearing larger mechanical properties. When the stern bearing outer ring material is 45#steel, and bush material is hard rubber, and bearing has good mechanical properties of the flexible and optimal; The rubber layer thickness of 20 mm, not only has good mechanical properties, but also can save cost, when designing the stern bearing structure.
2017,39(8): 64-69 收稿日期:2016-07-26
DOI:10.3404/j.issn.1672-7649.2017.08.014
分类号:TH133.3
基金项目:国家自然科学基金资助项目(51575289)
作者简介:王建(1989-),男,硕士研究生,研究方向为摩擦学与表面工程
参考文献:
[1] 杨建玺, 周浩兵, 崔凤奎.液体动静压轴承油腔结构对承载特性的影响[J].河南科技大学学报: 自然科学版, 2012, 33(5): 37-40.YANG Jian-xi, ZHOU Hao-bing, CUI Feng-kui.Effect of oil cavity structure on oil film's load bearing characteristic for hydrostatic bearing[J].Journal of Henan University of Science & Technology, 2012, 33(5): 37-40.
[2] 伍良生, 刘振宇, 张宝柱, 等.带过渡深腔的动压轴承的优化设计与试验[J].机械工程学报, 2006, 42(11): 144-149.WU Liang-sheng, LIU Zhen-yu, ZHANG Bao-zhu, et al.Optimization design and experiment of journal bearing with deep transition cavity[J].Journal of Mechanical Engineering, 2006, 42(11): 144-149.
[3] 杨俊, 王隽, 周旭辉, 等.水润滑橡胶轴承结构设计[J].舰船科学技术, 2011(8): 103-107.YANG Jun, WANG Jun, ZHOU Xu-hui, et al.Design of the structure of water lubricated rubber bearing [J].Ship Science and Technology, 2011(8): 103-107.
[4] 张杰, 郭宏升, 牛犇, 等.水润滑高速动静压滑动轴承数值模拟[J].农业机械学报, 2008, 39(6): 159-162.ZHANG Jie, GUO Hong-sheng, NIU Ben, et al.Water lubrication of high speed dynamic static pressure sliding bearing numerical simulation [J].Journal of Agricultural Machinery, 2008, 39(6): 159-162.
[5] 王芳芳, 陈渭, 张友峰.新型水润滑动静压高速主轴轴承的流场模拟[J].润滑与密封, 2010, 35(12): 28-31.WANG Fang-fang, CHEN Wei, ZHANG You-feng.Flow field simulation of a new type of hydrostatic high speed spindle bearing [J].Lubrication and Seal, 2010, 35(12): 28-31.
[6] 律辉, 王优强, 刘籨丽, 等.不同板层材料水润滑轴承力学性能有限元仿真[J].润滑与密封, 2014(8): 57-62.
[7] 周广武, 王家序, 王战江, 等.多沟槽水润滑橡胶合金轴承润滑特性研究[J].摩擦学学报, 2013, 33(6): 630-637.ZHOU Guang-wu, WANG Jia-xu, WANG Zhan-jiang, et al.Analysis of multi-grooves water lubricated rubber alloy bearing considering the elastohydrodynamic lubrication[J].Tribology, 2013, 33(6): 630-637.
[8] 车建明.静压向心轴承的结构创新设计[J].润滑与密封, 2005(3): 102-104.CHE Jian-ming.A structure innovation on the hydrostatic journal bearing[J].Lubrication Engineering, 2005.
[9] 邵俊鹏, 张艳芹, 李鹏程.基于FLUENT的静压轴承椭圆腔和扇形腔静止状态流场仿真[J].润滑与密封, 2007, 32(1): 93-95.SHAO Jun-peng, ZHANG Yan-qin, LI Peng-cheng.Static flow simulation of hydrostatic bearing ellipse and sector curve based on FLUENT[J].Lubrication Engineering, 2007, 32(1): 93-95.
[10] 陈燕生, 等.液体静压支承原理和设计[J].1980.