为建立复杂外形潜水器精确的动力学模型,并基于模型设计控制算法,本文以DOE HD2+2无人遥控潜水器(ROV)为对象,应用计算流体力学(CFD)粘流方法与面元法预测水动力系数。为提高计算速度,在保证计算精度的前提下,采用多面体网格,进行网格优化,减少了流体域的网格总数。由于ROV几何外形不对称,基于最小二乘法分段拟合了阻尼力/力矩与速度的曲线,建立了耦合的阻尼矩阵和附加质量矩阵。最后,基于CFD计算的水动力系数建立了Matlab Simulink动力学仿真模型,并通过水池操控实验对所建动力学模型进行了有效性验证。
As a complex-shaped underwater vehicle, DOE HD2+2 remotely operated vehicle (ROV) is chosen as an object to compute hydrodynamic parameters. It is necessary for nonlinear modeling of complex-shaped underwater vehicle and model-based control system design. Damping coefficients and added mass coefficients are determined by computational fluid dynamics (CFD) viscous flow method and panel method. Instead of tetrahedral mesh, polyhedral mesh is adopted to improve the computational time. And mesh is optimized to reduce the total number of grids in the flow domain. Due to the asymmetry of geometry shape of ROV, the curves of damping force and moment versus velocity are piecewise fitted. Finally, the dynamic simulation model of ROV is established by Matlab Simulink based on hydrodynamic coefficients determined by CFD, and the validity of dynamic model is validated by pool experiment.
2017,39(9): 23-28 收稿日期:2017-01-09
DOI:10.3404/j.issn.1672-7649.2017.09.005
分类号:U661.3
作者简介:许孟孟(1989-),男,硕士研究生,研究方向为水下运载器动力学建模与控制
参考文献:
[1] FOSSEN T I. Guidance and control of ocean vehicles[M]. 1994.
[2] 刘应中. 船舶原理. 下册[M]. 上海:上海交大出版社, 2005.
[3] YOERGER D R, NEWMAN J, SLOTINE J J E. Supervisory control system for the JASON ROV[J]. IEEE Journal of Oceanic Engineering, 1986, 11(3):392-400.
[4] 施生达. 潜艇操纵性[M]. 国防工业出版社, 1995.
[5] YANG R, CLEMENT B, MANSOUR A, et al. Modeling of a complex-shaped underwater vehicle[J]. Journal of Intelligent & Robotic Systems, 2015, 80(3):491-506.
[6] TYAGI A, SEN D. Calculation of transverse hydrodynamic coefficients using computational fluid dynamic approach[J]. Ocean Engineering, 2006, 33(5-6):798-809.
[7] TANG S, URA T, NAKATANI T, et al. Estimation of the hydrodynamic coefficients of the complex-shaped autonomous underwater vehicle TUNA-SAND[J]. Journal of Marine Science and Technology, 2009, 14(3):373-86.
[8] CHENG C, LAU M. Modeling and testing of hydrodynamic damping Model for a complex-shaped remotely-operated vehicle for control[J]. Journal of Marine Science and Application, 2012, 11(2):150-63.
[9] ENG Y H, LAU W S, LOW E, et al. Estimation of the hydrodynamics coefficients of an ROV using free decay pendulum motion[J]. Engineering Letters, 2008, 16(3):329-42.
[10] AVILA J P, ADAMOWSKI J C, MARUYAMA N, et al. Modeling and identification of an open-frame underwater vehicle:the yaw motion dynamics[J]. Journal of Intelligent & Robotic Systems, 2012, 66(1):37-56.
[11] AVILA J J, NISHIMOTO K, SAMPAIO C M, et al. Experimental investigation of the hydrodynamic coefficients of a remotely operated vehicle using a planar motion mechanism[J]. Journal of Offshore Mechanics & Arctic Engineering, 2012, 134(2):46-51.
[12] KIM H, LEONG Z Q, RANMUTHUGALA D, et al. CFD modelling and validation of an AUV undergoing variable accelerations, F, 2014[C].
[13] EBRAHIMI F, RASTGOO A. Evaluation of linear and nonlinear hydrodynamic coefficients of underwater vehicles using CFD[C]//proceedings of the ASME 2009 International Conference on Ocean, Offshore and Arctic Engineering, F, 2009[C].
[14] MUNSON B R, YOUNG D F, OKⅡSHI T H. Fundamentals of fluid mechanics[M]. Wiley, 1990.
[15] 刘岳元, 冯铁城, 刘应中. 水动力学基础[M]. 上海交通大学出版社, 1990.
[16] SHADLAGHANI A, MANSOORZADEH S. Calculation of linear damping coefficients by numerical simulation of steady state experiments[J]. 2016, 9(2):653-60.
[17] NEWMAN J N, LANDWEBER L. Marine hydrodynamics[J]. Journal of Applied Mechanics, 1977, 45(2):457.