选取合理的模型和状态方程参数,利用有限元软件LS-DYNA计算空中爆炸超压峰值,将数值模拟结果与实验结果和经验公式进行对比,证明参数选择的合理性并验证数值模拟的精度。通过控制参数,选择不同的比例距离,研究无反射边界条件对TNT空中爆炸峰值超压的影响,结果表明,无反射边界附近一定范围内的超压峰值会受到影响;建模区域的比例距离超出考查范围一定区域可减弱无反射边界条件对超压峰值的影响。
FEM program LS-DYNA is used to simulate the spread of blast wave in air, with appropriate modeling and EOS parameters. Comparing among results of simulation, experiments and experience equations, the rationality of parameters and precision of numerical simulation are proved. By controlling the parameters and choosing different scaled distances, research on peak over-pressure of blast in air by non-reflect boundary is conducted. Results show that peak over-pressure is effected in scaled distances near the non-reflect boundary; the scaled distances of the model should be longer than testing distances in order to decrease the impact of non-reflect boundary on peak over-pressure.
2017,39(9): 40-44 收稿日期:2016-12-22
DOI:10.3404/j.issn.1672-7649.2017.09.008
分类号:O38
作者简介:章幂(1992-),男,硕士研究生,研究方向为空中爆炸下的结构响应与防护
参考文献:
[1] 亨利奇J. 熊建国. 译. 爆炸动力学及其应用[M]. 北京:科学出版社, 1987.
[2] 李翼祺, 马素贞. 爆炸力学[M]. 北京:科学出版社, 1992.
[3] 时党勇, 李裕春, 张胜民. 基于ANSYS/LS-DYNA8.1进行显示动力分析[M]. 北京:清华大学出版社, 2005.
[4] 杨鑫, 石少卿, 程鹏飞. 空气中TNT爆炸冲击波超压峰值的预测及数值模拟.[J]. 爆破, 2008, 25(1):15-18, 31.
[5] 卢红琴, 刘伟庆. 空中爆炸冲击波的数值模拟研究[J]. 武汉理工大学学报, 2009, 31(19):105-108.
[6] Department of the Army Washington DC. Structures to Resist the Effects of Accidental Explosions[R]. ADA951601, Washington DC:Department of the Army, 1969.
[7] 贝克WE. 江科, 译. 空中爆炸[M]. 北京:原子能出版社, 1982. BAKER W E. Engineering design handbook:explosions in air part one[M]. JIANG Ke, Translated. Beijing:Atomic Energy Press, 1982.