尾轴承是船舶推进系统的重要组成部分,尾轴承材料对轴承的性能起着决定性作用。本文设计并制备了不同配比的愈创树脂-高密度聚乙烯复合材料,对合成的新复合材料和普通高密度聚乙烯材料进行力学性能测试,并比较添加了不同含量的愈创树脂对复合材料的性能影响。在CBZ-1船舶轴系摩擦磨损试验机上对4种材料进行摩擦试验,考察在渐变转速下复合材料的摩擦系数和磨损率。通过分析试验数据,确定了材料混合最佳配比。试验结果表明B型(0.5%愈创树脂)复合材料在力学性能和摩擦性能方面综合性能最好,该研究为该类材料未来在水润滑尾轴承方面的应用提供试验依据。
Stern bearing is an important component of the marine propulsion system. the material of Stern bearing plays a decisive role in the bearing performances. In this study, different proportion of guaiacum-HDPE were designed. The mechanical properties of new composite materials and the general HDPE material were examined. Moreover, the performance influences on composites of different guaiacum concentrations were compared and analyzed. Wear tests of the four materials were conducted using the CBZ-1 pin-on-disc tester. The friction coefficient and wear mass loss of rubbing pairs were analyzed under the test conditions. By analyzing test data, the optimum material mixing ratio was obtained. The tested results showed that the composite material B (0.5% guaiacum) had the best comprehensive properties in mechanical properties and tribological performances. This research will provide the experimental basis on the future applications of water-lubricated stern bearing.
2017,39(9): 117-122 收稿日期:2016-11-04
DOI:10.3404/j.issn.1672-7649.2017.09.023
分类号:TB33
基金项目:国家自然科学基金青年基金资助项目(51509195);国家自然科学基金优秀青年基金资助项目(51422507)
作者简介:姜松(1991-),男,硕士研究生,研究方向为摩擦学及表面工程
参考文献:
[1] ROLT L T C. The mechanicals:progress of a profession[M]. Institution of Mechanical Engineers, 1967.
[2] ORNDORFF JR R. Water-Lubricated rubber bearings, history and new developments[J]. Naval Engineers Journal, 1985, (10):39-52.
[3] 周广武. 水润滑橡胶合金轴承混合润滑分析与动力学性能优化[D]. 重庆:重庆大学, 2013.
[4] 梁强. 船用水润滑轴承数值计算及结构优化[D]. 武汉:武汉理工大学, 2009.
[5] SHYU SHIUH-HWA, JENG YEAU-REN. An efficient general fluid-film lubrication model for plane slider bearings[J]. Tribology Transaction, 2002, 45(2):161-168.
[6] DAS S, GUHA S K, CHATTOPADHYAY A K. On the steady-state performance of misaligned hydrodynamic journal bearings lubricated with micropolar fluids[J]. Tribology International, 2002, 35(4):211-217.
[7] 王晓雷, 刘海叶, 黄巍. 水润滑材料的发展状况及其趋势[J]. 机械制造与自动化, 2013, 04:5-8+20.
[8] BHUSHAN B, GRAY S, GRAHAM R W. Development of low-friction elastomers for bearings and seals[C]//American Society of Lubrication Engineers, Annual Meeting, 36 th, Pittsburgh, Pa. 1981.
[9] 肖科, 王家序, 张榆, 等. 纳米级氧化锌晶须对水润滑轴承材料的改性研究[J]. Wear, 2004, 996(200):95-104.
[10] 胡志孟, 赖世全, 李同生. 凹凸土/丁腈橡胶纳米复合材料的制备与性能[J]. 弹性体, 2004, 14(3):39-42.
[11] 周扬波, 古菊, 贾德民, 等. 改性纳米碳酸钙对丁腈胶的补强作用[J]. 弹性体, 2004, 14(3):35-38.
[12] 秦红玲. 水润滑复合橡胶尾轴承摩擦学问题研究[D]. 武汉:武汉理工大学, 2012.
[13] 赵华松, 刘凯, 唐育民, 等. 橡胶-碳纤维复合水润滑轴承材料的研究[J]. 船海工程, 2013, 06:115-117.
[14] 戴明城, 刘正林, 樊发孝. SF-1材料水润滑艉轴承摩擦性能研究[J]. 武汉理工大学学报, 2011, 03:58-61.
[15] 彭晋民, 王家序, 余江波, 等. 水润滑塑料合金轴承摩擦性能实验[J]. 重庆大学学报(自然科学版), 2001, 06:9-11, 35.
[16] 孙文丽, 王优强, 时高伟. 赛龙轴承材料摩擦学性能的试验研究[J]. 润滑与密封, 2011, 05:36-39.
[17] BASU B, VLEUGELS J, VAN DER BIEST O. Fretting wear behavior of TiB2-based materials against bearing steel under water and oil lubrication[J]. Wear, 2001, 250:631-641.
[18] ANDERSON P, Water-lubricated and dry-running properties of ceramic journal bearings[J]. Tribotest, 200310(2):147-161.