为实现强海洋背景噪声中的微弱船舶轴频电场信号检测,提出了一种结合经验模态分解(Empirical Mode Decomposition,EMD)和窄带子区间功率谱熵的线谱提取新算法。首先,利用EMD方法从含噪信号中分解出一组有效固有模态函数(Intrinsic Mode Functions,IMFs),对各有效IMF的功率谱进行子区间划分;其次,定义并计算各子区间的能量峰值熵比(Energy Peak Entropy Ratio,EPER)特征;最后,通过对轴频信号和环境噪声物理特征差异的分析,结合K-均值聚类方法进行特征量的筛选,实现线谱提取。海上实测数据的处理结果表明,相比于直接的功率谱分析,算法的线谱可提取下限降低了6.7 dB。
In order to implement detection of weak ship shaft-rate electric field signal buried in strong marine background noise, a new line spectrum extraction algorithm combining Empirical Mode Decomposition (EMD) and narrowband sub-interval power spectra entropy is proposed. Firstly, a set of effective Intrinsic Mode Functions (IMFs) were separated from noise-polluted signal by means of EMD method, of which the power spectra was then divided into subinterval sections. Furthermore, a new feature named Energy Peak Entropy Ratio (EPER) of each section was defined and computed. Finally, taking advantage of analyzing differences of physical properties between shaft-rate signal and ambient noise, together with K-means clustering method, line spectrum was extracted. Processing results of sea measured data indicate that, comparing to direct power spectra analysis, the line spectrum detection low bound is reduced by 6.7 dB.
2017,39(9): 159-163 收稿日期:2016-08-22
DOI:10.3404/j.issn.1672-7649.2017.09.032
分类号:TP274.5
基金项目:国家自然科学基金资助项目(51109215,51509252)
作者简介:程锐(1988-),男,博士研究生,研究方向为目标特性及其信息处理技术
参考文献:
[1] 林春生, 龚沈光. 舰船物理场[M]. 北京:兵器工业出版社, 2007:237-243.
[2] 熊露, 姜润翔, 龚沈光. 浅海中船舶轴频电场建模方法[J]. 国防科技大学学报, 2014, 36(1):98-103. XIONG Lu, JIANG Run-xiang, Gong Shen-guang. Ship modeling method of shaft-ELFE in shallow sea[J]. Journal of National University of Defense Technology, 2014, 36(1):98-103.
[3] DYMARKOWSKI K, UCZCIWEK J. The extremely low frequency electromagnetic signature of the electric field of the ship[C]//Proceedings of Undersea Defense Technology, Washington:Nexus Media Limited, 2001:1-6.
[4] 常明, 姜润翔, 张伽伟, 等. 基于主动轴接地系统的船舶轴频电场抵消方法[J]. 海军工程大学学报, 2015, 27(1):64-67. CHANG Ming, JIANG Run-xiang, ZHANG Jia-wei, et al. Method of reducing ship's shaft-rate electric field based on ASG system[J]. Journal of Naval University of Engineering, 2015, 27(1):64-67.
[5] MILLER R C. Active shaft grounding and diagnostic system:U.S, 4, 873, 512[P]. 1989-10-10.
[6] 李松. 船舶电场目标特征提取与检测方法研究[D]. 武汉:海军工程大学, 2008. LI Song. Research on feature extraction and detection algorithms of ship electric field signal[D]. Wuhan:Naval University of Engineering, 2008.
[7] 贾亦卓, 姜润翔, 龚沈光. 基于小波模极大值的船舶轴频电场检测算法研究[J]. 兵工学报, 2013, 34(5):579-584. JIA Yi-zhuo, JIANG Run-xiang, GONG Shen-guang. Research on wavelet modulus maximum-based detection algorithm of ship's shaft-rate electric field[J]. Acta Ar-mamentarii, 2013, 34(5):579-584.
[8] 胡鹏, 肖爱明, 龚沈光. 基于小波尺度相关的船舶轴频电场信号检测算法[J]. 探测与控制学报, 2013, 35(2):37-40. HU Peng, XIAO Ai-ming, GONG Shen-guang. Detection algorithm for ship shaft-rate electric field signal based on wavelet scale correlation[J]. Journal of Detection & Control, 2013, 35(2):37-40.
[9] 胡鹏, 包中华, 龚沈光. 基于小波包熵的船舶轴频电场信号消噪研究[J]. 应用基础与工程科学学报, 2011, 19(4):672-678. HU Peng, BAO Zhong-hua, GONG Shen-guang. Denoising the signal of ship shaft-rate electric field based on wavelet packet entropy[J]. Journal of Basic Science and Engineering, 2011, 19(4):672-678.
[10] 程锐, 姜润翔, 龚沈光. 基于EMD和4阶累积量的船舶轴频电场线谱提取[J]. 舰船科学技术, 2016(1):94-98. CHENG Rui, JIANG Run-xiang, GONG Shen-guang. Ex-traction of line spectrum of the ship shaft-rate electric field based on EMD and fourth-order cumulant[J]. Ship Science and Technology, 2016(1):94-98.
[11] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 1998, 454(1971):903-995.
[12] FLANDRIN P, RILLING G, GONCALVES P. Empirical mode de-composition as a filter bank[J]. IEEE Signal Processing Letters, 2004, 11(2):112-114.
[13] 刘荣, 刘珩. 低信噪比下基于功率谱熵的语音端点检测算法[J]. 计算机工程与应用, 2009, 45(33):122-124. LIU Rong, LIU Kan. Power spectrum entropy based voice activity detection algorithm in low signal-to-noise ratio conditions[J]. Computer Engineering and Applications, 2009, 45(33):122-124.
[14] HARTIGAN J A, WONG M A. Algorithm AS 136:A k-means clustering algorithm[J]. Journal of the Royal Statistical Society. Series C (Applied Statistics), 1979, 28(1):100-108.
[15] 张自力, 魏文博, 刘保华, 等. 海浪感应电磁场的理论计算[J]. 海洋学报, 2008, 30(1):42-46. ZHANG Zi-li, WEI Wen-bo, LIU Bao-hua, et al. Theoretical calculation of electromagnetic field generated by ocean waves[J]. Acta Oceanologica Sinica, 2008, 30(1):42-46.