随着船舶节能减排要求的提高,吊舱推进系统因其具有常规电力推进无法比拟的优点而成为目前国内外造船界的研究热点。本文对船舶吊舱推进电机的类型及特点进行分析,归纳和总结了国内外在船舶吊舱推进电机的结构、类型、负载特性以及电机控制等方面的研究及应用现状,并对推进电机的控制策略进行分析。在此基础上,对未来船舶吊舱推进电机控制策略的发展做了展望,并对基于无模型自适应控制的船舶吊舱推进电机控制系统进行研究。
With the increasing demand of marine energy efficiency and emission reduction, the ship podded propulsion system which has great advantages over the conventional ship electric propulsion has become the research focus currently over the shipbuilding industry. In this paper, the types and characteristics of ship podded propulsion motor are analyzed. The research status and developing trends of the ship podded propulsion motor structure, type, load characteristic and motor control on domestic and overseas is summarized. Especially, the control strategies of the propulsion motor are investigated and summarized. On the base of this, some outlook on the future development of ship podded propulsion motor are discussed, and the ship podded propulsion motor control system based on the MFAC was studied.
2017,39(10): 1-6 收稿日期:2016-03-29
DOI:10.3404/j.issn.1672-7649.2017.10.001
分类号:TM359;U665.12
基金项目:青岛科技大学博士科研启动基金资助项目(010022820);中远集团科技计划资助项目(2014-1-H-005,2016-1-H-009,2017-1-H-010);青岛市市南区科技计划资助项目(2012-5-004-ZH,2012-5-005-ZH);山东省自然科学基金面上资助项目(Zr2017mee071)
作者简介:姚文龙(1981-),男,博士,副教授,研究方向为船舶吊舱推进电机控制
参考文献:
[1] 马伟明. 舰船动力发展的方向-综合电力系统[J]. 海军工程大学学报, 2002, 14(6):1-5.
[2] 马骋. 吊舱推进技术[M]. 上海:上海交通大学出版社, 2007.
[3] AKINTURK A, ISLAM MF, VEITCH B, et al. Performance of dynamic azimuthing podded propulsor[J]. International Shipbuilding Progress, 2012, 59(1):83-106.
[4] DARNON, FRANCK, et al. An overview of electric propulsion activities in France. Collection of Technical Papers-43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2007:1603-161.
[5] RAHMAN M A, OSHEIBA A M. Performance of large line-start permanent magnet synchronous motors[J]. IEEE Transactions on Energy Conversion, 1990, 5(1):211-217
[6] HASEGAWA C, NISHIKATA S. A simple starting method for self-controlled synchronous motors in electric propulsion systems for ships[C]//European Conference on Power Electronics and Applications, 2007, 9:1-10.
[7] MITCHAM A J. A novel permanent magnet propulsion motor for future warships. IME, Paper 16, 1994
[8] DO HYUN Kang, YEON HO Jeong, MOON HWAN Kim. A study on the design of transverse flux linear motor with high power density[C]//IEEE, Industrial Electronics, 2001. proceedings. Volume:2, 2001. Page(s):707-711
[9] 赵清. 中型高效永磁同步电动机设计关键技术研究[D]. 沈阳:沈阳工业大学, 2006.
[10] GUNAR K, MARKUS W, Joachim Frauenhofer, et al. Design challenges and benefits of HTS synchronous machines[J]. IEEE Transactions on Applied Super conductivity, 2007, 17(7):1-8.
[11] 陈彪, 顾国彪. 高温超导电机转子冷却技术的研究[J]. 电工技术学报, 2011, 16(10):143-151.
[12] Qyvind Notland Smogeli. Control of marine propellers from normal to extrme conditions[D]. Norwegian University of Science and Technology, 2006.
[13] LI H, STEURER M, SHI K L, et al. Development of a unified design, test, and researeh platform for wind energy systems based on hardware-in-the-loop real-time simulation[C]//IEEE Trans. on Industrial Elcetronies. 2006. 53(4). 1144-1151.
[14] 刘雨. 船舶电力推进系统动态过程仿真与推进电机控制方法的研究[D]. 大连:大连海事大学, 2008.
[15] 陈实如. 船用螺旋桨负载特性动态实验仿真系统研究[D]. 哈尔滨:哈尔滨工程大学, 2001.
[16] 高海波. 船舶电力推进系统的建模与仿真[D]. 武汉:武汉理工大学, 2008.
[17] 薛士龙. 船舶电力推进仿真装置及其关键技术的研究[D]. 上海:上海海事大学, 2006.
[18] 张桂臣, 马捷. 基于SIMOTION吊舱式电力推进的应用研究[J]. 中国造船, 2010, 51(4):45-50.
[19] 李殿璞. 基于螺旋桨特性四象限特性Chebyshev拟合式的深潜艇正倒航变速推进模型[J]. 哈尔滨工程大学学报, 2002, 23(1):52-57.
[20] 杨伯梅. 螺旋桨负载特性的半实物仿真平台研究[D]. 大连:大连海事大学, 2013.
[21] 李鹏, 王胜勇, 卢家斌. PI参数混合整定法在闭环矢量控制系统中的应用[J]. 智能系统学报, 2013(6):1-7
[22] FLORENT M, XUEFANG Lin-Shi, JEAN-MARIE R, et al. A predictive current control applied to a permanent magnet synchronous machine comparison with a classical direct torque control[J]. Eledtric Power Systems Research 2008, 78:1437-1447.
[23] 周华伟, 温旭辉, 赵峰. 基于内模的永磁同步电机滑模电流解耦控制[J]. 中国电机工程学报, 2012(32):91-99.
[24] LIAN R J, LINB B F, HUANG J H. A grey prediction fuzzy controller for constant cutting force in turning[J]. International Journal of Machine Tools & Manufacture, 45:1047-1056, 2005.
[25] 李亮亮, 何勇, 叶海翔. 基于ITAE最优控制的永磁同步电机矢量控制仿真[J]. 电机与控制应用, 2011(38):31-45.
[26] ANDON V T, GIUSEPPE L C, VINCENZO Getal, et al Sliding mode neuro-adaptive control of electric drives[J]. IEEE Transactions on Industrial Electronics. 2007, 54(1):671-679.
[27] ANGELO C, BOSSIO G, GARCIA G, et al. Speed control of PMSMs with interconnection and damping assignment or feedback linearization comments about their performance[C]//Industrial Electronics. Montreal, 2006:2182-2187.
[28] ORTEGA R, VAN DER SCHAFT A, CASTANOS F, et al. Control by interconnection and standard passivity-based control of port- Hamiltonian systems[J]. IEEE Trans on Automatic Control, 2008, 53(11):2527-2542.
[29] 王礼鹏, 张化光, 刘秀翀. 永磁同步电动机无速度传感器矢量调速系统的积分反步控制[J]. 控制理论与应用, 2012(29):199-204.
[30] 张春朋, 林飞, 宋文超, 等. 基于直接反馈线性化的异步电动机非线性控制[J]. 中国电机工程学报, 2003(23):99-103.
[31] 李擎, 杨立永, 李正熙, 等. 异步电动机定子磁链与电磁转矩的逆系统解耦控制方法[J]. 中国电机工程学报, 2006(26):146-150.
[32] 孙凯, 许镇琳, 邹积勇. 基于自抗扰控制器的永磁同步电机无位置传感器矢量控制系统[J]. 中国电机工程学报, 2007(27):18-22.
[33] 杨明. 船舶电力推进永磁同步电机非线性反步控制器设计与优化研究[D]. 大连:大连海事大学, 2012.
[34] NASSIM K. Robust observers and controllers for marine surface vessels undergoing maneuvering and course-keeping tasks[D]. America:Wayne State University, 2010.
[35] 侯忠生. 非参数模型及其自适应控制理论[M]. 北京:科学出版社, 1999.
[36] 马洁, 陈智勇, 侯忠生. 大型舰船综合减摇系统无模型自适应控制[J]. 控制理论与应用, 2009. 26(11):1289-1292
[37] CHI R H, HOU Z S, JIN S T, et al, A data-driven iterative feedback tuning approach of ALINEA for freeway traffic ramp metering with PARAMICS simulations[C]//IEEE Transactions on Industrial Informatics, 2013,9(4):2310-2317.
[38] 姚文龙, 张均东, 池荣虎, 等. 船舶吊舱SSP推进电机的无模型自适应矢量控制[J]. 交通运输工程学报, 2014, 14(6):59-66.