探究基于复合材料的拓扑优化设计方法在水下耐压结构设计中的应用。本文方法是在等值线方法、SIMP(Solid Isotropic Material with Penalization)模型、灵敏度过滤技术的基础上,推导复合材料的等效刚度矩阵。通过经典桥形结构优化算例、静水压作用下的结构拓扑优化设计以及空心水下耐压结构优化设计,分析了在拓扑相关载荷作用下,复合材料对于水下耐压结构的最优拓扑形式的影响。发现复合材料与各向同性材料结构的优化结果比较相似,而复合材料的铺层方式及角度的变化可能对优化结果产生较大的影响,本文对空心耐压结构的优化结果与 MIT 团队提出的耐压壳概念相类似,说明复合材料的拓扑优化研究对于未来水下耐压结构的设计具有重要的参考价值及指导意义。
The paper studies the application of topology optimization with laminate composites in the design of underwater pressure structure. The methodology is based on the isoline method, the solid isotropic material with penalization (SIMP) model, and sensitivity filtering techniques. In addition, the equivalent element stiffness matrix for laminate composites is derived. By computing topology design cases of classical bridge-like structure, underwater structure subjected to hydrostatic pressure, and underwater pressure structure with initial void, the influence on the optimal result of structure under design-dependent loads taken by composites is analyzed. It is found that the structural optimization results of composite material and isotropic material are similar. The change of the angle and laminated type of composite layups may have a large influence on the optimal form of structure. There are similarities between the optimization results of pressure structure with initial void obtained in this paper and the concept put forward by MIT team. Therefore, the research of topology optimization with composite material will make contributions to the design of underwater pressure structure in the future.
2017,39(10): 14-21 收稿日期:2016-10-21
DOI:10.3404/j.issn.1672-7649.2017.10.003
分类号:U663.1;U674.941
作者简介:戴扬(1991-),男,硕士研究生,研究方向为复合材料结构拓扑优化
参考文献:
[1] BOWEN A D, YOERGER D R, TAYLOR C, et al. The Nereus hybrid underwater robotic vehicle for global ocean science operations to 11, 000m depth[C]//Oceans. 2008:1-10.
[2] MICHELL A G M. The limit of economy of material in frame structures[J]. Philosophical Magazine Ser, 1904, 8. 589-597.
[3] BENDSOE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics & Engineering, 1988, 71(2):197-224.
[4] SUZUKI K, KIKUCHI N. A homogenization method for shape and topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 93(3):291-318.
[5] BENDSOE M P. Optimal shape design as a material distribution problem[J]. Structural Optimization, 1989, 1(4):193-202.
[6] ZHOU M, ROZVANY G I N. The COC algorithm, Part Ⅱ:Topological, geometrical and generalized shape optimization[J]. Computer Methods in Applied Mechanics & Engineering, 1991, 89(1-3):309-336.
[7] SIGMUND O. On the design of compliant mechanisms using topology optimization[J]. Mechanics of Structures & Machines, 1997, 25(4):493-524.
[8] MLEJNEK H P, SCHIRRMACHER R. An engineer's approach to optimal material distribution and shape finding[J]. Computer Methods in Applied Mechanics & Engineering, 1993, 106(1-2):1-26.
[9] SIGMUND O. Design of material structures using topology optimization[D]. Denmark:Technical University, 1994.
[10] BENDSOE M P, SIGMUND O. Material interpolation schemes in topology optimization[J]. Archive of Applied Mechanics, 1999, 69(9):635-654.
[11] MAUTE K, RAMM E. Adaptive topology optimization[J]. Structural Optimization, 1995, 10(2):100-112.
[12] HAMMER V B, OLHOFF N. Topology optimization of continuum structures subjected to pressure loading[J]. Structural and Multidisciplinary Optimization, 2000, 19(2):85-92.
[13] DU J, OLHOFF N. Topological optimization of continuum structures with design-dependent surface loading-Part I:new computational approach for 2D problems[J]. Structural and Multidisciplinary Optimization, 2004, 27(3):151-165.
[14] LEE D, SHIN S, TUAN L A, et al. Computational MATLAB-based optimal design of laminated composite plates[C]//Proc. 5th European Conference of Computer Science, Recent Advances in Information Technology. Geneva, Switzerland, 2014.
[15] BORRVALL T. Topology optimization of elastic continua using restriction[J]. Archives of Computational Methods in Engineering, 2001, 8(4):351-385.
[16] SIGMUND O. Morphology-based black and white filters for topology optimization[J]. Structural and Multidisciplinary Optimization, 2007, 33(4):401-424.
[17] 龙凯, 傅晓锦. 考虑密度梯度的敏度过滤方法[J]. 计算机辅助设计与图形学学报, 2014, 26(4):669-674. LONG Kai, FU Xiao-jin. Sensitivity filtering method considering density gradient[J]. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(4):669-674.
[18] 张维声, 孙国, 郭旭, 等. 基于水平集描述的结构拓扑与构件布局联合优化新方法[J]. 工程力学, 2013, 30(7):22-27. ZHANG Wei-sheng, SUN Guo, GUO Xu, et al. A level set-based approach for simultaneous optimization of the structural topology optimization and the layout of embedding structural components[J]. Engineering Mechanics, 2013, 30(7):22-27.
[19] SVANBERG K. The method of moving asymptotes-a new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2):359-373.
[20] WANG Cun-fu, ZHAO Min, GE Tong. Structural topology optimization with design-dependent pressure loads[J]. Structural and Multidisciplinary Optimization, 2015:1-14.
[21] MICHALERIS P, TORTORELLI D A, VIDAL C A. Tangent operators and design sensitivity formulations for transient non-linear coupled problems with applications in elastoplasticity[J]. International Journal for Numerical Methods in Engineering, 1994, 37(14):2471-2500.
[22] ZHENG B, CHANG C J, GEA H C. Topology optimization with design-dependent pressure loading[J]. Structural and Multidisciplinary Optimization, 2009, 38(6):535-543.
[23] 王存福. 水下耐压壳体拓扑优化设计方法探究[D]. 上海:上海交通大学, 2013.
[24] http://web.mit.edu/12.000/www/m2005/a2/finalwebsite/equipment/manned/hull.shtml.