安装在潜艇上的首部水平舵位置对于潜艇在垂直方向的稳定性以及操纵性具有重大意义。本文首先通过Fluent 14.0计算Suboff模型的阻力以及DTMB舵型的升、阻力,仿真结果与实验结果吻合较好。然后计算带围壳舵Suboff潜艇和带首舵Suboff潜艇的阻力、升力特性,并比较了潜艇带首舵和围壳舵的升阻力特性差异,以及对艇体表面压力分布和尾部流场的影响。计算结果显示,相同舵角下,围壳舵和首舵阻力相差不大,围壳舵升力比首舵升力大。相同舵角下,潜艇总阻力相差不大,带首舵潜艇总升力、总力矩比带围壳舵潜艇总升力、总力矩大。围壳舵舵角的变化对艇体表面的压力变化影响相对首舵来说较小。围壳舵和首舵在较大舵角下,都会对尾水平舵产生显著影响。
Hydrodynamic performance of the fore horizontal rudders installed on the submarine plays an important role on the vertical stability and maneuverability of submarine. At first, the paper uses commercial code fluent 14.0 to calculate the drag of Suboff, the drag, lift of DTMB rudder. Simulation results show good match with experimental results. Then the drag, lift characteristic of Suboff with sail rudder and Suboff with bow rudder are calculated. The difference between them, the influence on the pressure distribution of bare hull and the influence on wake flow field are analyzed. The results show that when rudder angle is the same, the difference between the drag of sail rudder and bow rudder is small. The lift of sail rudder is bigger than that of bow rudder. When rudder angle is the same, the difference of total drag is small, while the total lift and total moment of Suboff+bow rudder is bigger than those of Suboff+sail rudder. The rudder angle change of sail rudder has relatively small influence on the pressure distribution when comparing with that of bow rudder. When rudder angle of bow rudder and sail rudder is big, there will be obvious influence on horizontal tails.
2017,39(10): 22-28 收稿日期:2016-11-27
DOI:10.3404/j.issn.1672-7649.2017.10.004
分类号:U661.1
作者简介:丁自友(1993-),男,硕士研究生,研究方向为船舶水动力学
参考文献:
[1] BURCHER R, RYDILL L J. Concepts in submarine design[M]. Cambridge University Press, 1995.
[2] BULL P. The validation of CFD predictions of nominal wake for the SUBOFF fully appended geometry[C]//21st Symposium on Naval Hydrodynamics, June. 1996:1061-1076.
[3] BENSOW R, PERSSON T, FUREBY C, et al. Large eddy simulation of the viscous flow around submarine hulls[C]//25th ONR Symposium on Naval Hydrodynamics. 2004.
[4] 张楠, 沈泓萃, 姚惠之. 潜艇阻力与流场的数值模拟与验证及艇型的数值优化研究[J]. 船舶力学, 2005, 01:1-13. ZHANG Nan, SHEN Hong-cui, YAO Hui-zhi. Validation of numerical simulation on resistance and flow field of submarine and numerical optimization of submarine hull form[J]. Journal of Ship Mechanics, 2005, 01:1-13.
[5] 邓峰, 戴余良, 陈志法, 等. 基于CFD的水下回转体高速运动阻力预报精度影响研究[J]. 舰船科学技术, 2016, 38(3):22-26. DENG Feng, DAI Yu-liang, CHEN Zhi-fa, et al. Research on resistance forecast accuracy of high-speed underwater revolving object based on CFD[J]. Ship Science and Technology, 2016, 38(3):22-26.
[6] 刘明静, 马运义, 吴军. 潜艇艏舵绕流场的数值模拟[J]. 中国舰船研究, 2010, 05:40-43. LIU Ming-jing, MA Yun-yi, WU Jun. Numerical simulation on the flow around fore hydroplane of submarine[J]. Chinese Journal of Ship Research, 2010, 05:40-43.
[7] YAKHOT V, ORSZAG S A. Renormalization-group analysis of turbulence[J]. Physical Review Letters, 1986, 57(14):1722.
[8] GROVES N C, HUANG T T, CHANG M S. Geometric characteristics of DARPA (Defense Advanced Research Projects Agency) SUBOFF Models (DTRC Model Numbers 5470 and 5471)[R]. David Taylor Research Center Bethesda md Ship Hydromechan-ICS DEPT, 1989.
[9] WHICKER L F, FEHLNER L F. Free-stream characteristics of a family of low-aspect-ratio, all-movable control surfaces for application to ship design[R]. David Taylor Model Basin WASHINGTON DC, 1958.
[10] LIU H L, HUANG T T. Summary of DARPA SUBOFF experimental program data[R]. Naval Surface Warfare Center Card-erock DIV BETHESDA MD Hydromechanics Direc-Torate, 1998.
[11] HURT H H. Aerodynamics for naval aviators[M]. Skyhorse Pub. 1965.