为分析水雾对爆炸冲击波的耗散与衰减作用,通过有限元分析方法,在单层网格内建立冲击波作用于同体积比不同尺寸分布的液滴模型,对液滴阻碍冲击波作用的规律进行分析总结,得到结论如下:液滴的存在对冲击波有一定的削弱作用,且在液滴总体积比相同条件下,液滴数目多的工况比冲量衰减更大,可知分散的小液滴对冲击波的衰减作用强于集中的大液滴。0.1 kgTNT在0.2 m爆距产生的冲击波在二维模型中,液滴体积比为2.21×10–3时液滴直径为0.866 mm时冲击波衰减2.06%,液滴直径为0.500 mm时冲击波衰减3.14%,液滴直径为0.354 mm时衰减3.39%。
In order to analyse function of water droplets using for restraint and attenuation of explosive shock wave, a method using numerical simulation, setting several models of single layer in z-axis with equal fiuld volume but different droplets number, analyzing interaction between shock wave and droplets, obtaining some conclusions. Consequently, the existence of droplets actually attenuate explosive shock wave. In the condition of equal droplets volume, a model within more droplets has a higher attenuation ratio, which shows that decentralized samll droplets present better than centralized droplets in defending shock wave. Three droplets in a model with volume ratio of 2.21×10-3 attacked by explosive source of 0.1 kg TNT at 0.2 m, the attenuation ratio of shock wave is 2.06%, it's 3.14% of 9 droplets and 3.39% of 18 droplets.
2017,39(10): 45-48 收稿日期:2016-09-03
DOI:10.3404/j.issn.1672-7649.2017.10.008
分类号:O344.7
基金项目:国家自然科学基金资助项目(51479204,51409253)
作者简介:刘贵兵(1992-),男,硕士研究生,研究方向为舰船结构毁伤与防护
参考文献:
[1] GRANT G, BRENTON J, DRYSDALE D. Fire suppression by water sprays, Prog. Energy Combust. Sci. 2000, 26:79-130.
[2] JOURDAN G, BIAMINO L, MARIANI C. Attenuation of a shock Wave passing through a cloud of water droplets[J]. Shock Waves, 2010(20):285-296.
[3] SCHWER D, KAILASANATH K. Blast mitigation by water mist:Mitigation of confined and unconfined and unconfined blasts[J]. Navy research laboratory report, NRL/MR/6410-06-89762006.
[4] THOMAS G O. On the conditions required for explosion mitigation by water sprays[J]. Trans. I. Chem. E.:Part B Process Saf. Environ. Prot. 2000, 78:339-354.
[5] WIERZBA A, TAKAYAMA K. Experimental investigation of the aerodynamic breakup of liquid drops[J]. AIAA, 1988, 26(15):1329-1335.
[6] Gel'fand B E, GUBIN S A, KOGARKO S M. Destruction of gryogenic liquid drops by shock waves[J]. SSSR, 1972, 26(6):1313-1316.
[7] Gel'fand B E, GUBIN S A, KOGARKO S M. Various forms of drop fractionation in shock waves and their special characteristics[J]. Inzh. Fiz, 1974, 27(2):119-126.
[8] JALAAL M, MEHRAVARAN K. Fragmentation of falling liquid droplets in bag breakup mode[J]. International Journal of Multiphase Flow, 2012(47):115-132.
[9] 岳中文, 颜事龙, 刘锋. 液体抛撒初期水雾运动速度的实验研究[J], 安徽理工大学学报(自然科学版), 2006, 26(1):61-63. YUE Zhong-yan, YAN Shi-long, LIU Feng. An experimental study on veloctity of mist at initial stage of liquid dispersal[J]. 2006, 26(1):61-63.
[10] 李斌. 激波驱动下液体与固体抛撒的实验研究[D], 南京:南京理工大学, 2012. LI Bin. Experimential study on the disperisal of liquid and solid particles induced by shock wave[D]. Nanjing:Nanjing University of Science and Technology, 2012.
[11] 王超, 吴宇, 施红辉, 等. 液滴在激波冲击下的破裂过程[J], 爆炸与冲击, 2016, 36(1):129-134. WANG Chao, WU Yu, SHI Hong-hui, et al. Breakup process of a droplet under the impact of a shock wave[J]. Explosion and Shock Waves. 2016, 36(1):129-134.