舰船湿表面敷设的吸能覆盖层能起到一定的抗冲击作用。利用显示动力学有限元软件Abaqus建立该结构的有限元分析模型,研究以超弹性材料为基底的六韧带手性蜂窝结构覆盖层的动态压缩行为,分析覆盖层在动态压缩过程中的变形特征、加速度、应力以及整体的能量吸收等物理参数随时间的变化特性。结果表明在相同载荷、不同冲击速度作用下覆盖层结构的宏观变形模式不同;随着初速度的增加,覆盖层结构的动态压缩行为以及能量吸收表现愈加明显。
The energy-absorption layer coating the wet surface of ship is able to enhance the effect of anti-shock to some extent. This paper established the finite element analysis model of this structure by using display dynamic finite element software ABAQUS, studied dynamic compression behavior of six ligament chiral honeycomb structure coating layer based on the hyper elastic material, and analyzed the characteristics of coating layer physical parameters such as deformation characteristics, acceleration, stress and energy absorption of the whole which changed with time in the process of dynamic compression. The results show that under the function of same load and different impact velocity, coating layer gets different macroscopic deformation mode, and with the increase of initial velocity, dynamic compression behavior of the coating layer and the performance of energy absorption become more remarkable.
2017,39(10): 55-60 收稿日期:2016-09-10
DOI:10.3404/j.issn.1672-7649.2017.10.010
分类号:TU552
基金项目:国家自然科学基金资助项目(51365007,11304050);贵州省教育厅优秀科技创新人才计划资助项目(黔教合KY字[2014]246);贵州省高层次创新型人才培养资助项目(黔科合人才[2016]4033号)
作者简介:江坤(1988-),男,硕士研究生,研究方向为结构抗冲击理论及应用
参考文献:
[1] PRAWOTO Y. Seeing auxetic materials from the mechanics point of view:A structural review on the negative Poisson's ratio[J]. Computational Materials Science, 2012, 58:140-153.
[2] HOU Y, TAI Y H, LIRA C, et al. The bending and failure of sandwich structures with auxetic gradient cellular cores[J]. Applied Science & Manufacturing, 2013, 49(3):119-131.
[3] GIBSON, LORNA J, ASHBY, M. F. Cellular solids:structure and properties[M]. Cambridge University Press, 1999.
[4] ZOU Z, REID S R, TAN P J, et al. Dynamic crushing of honeycombs and features of shock fronts[J]. International Journal of Impact Engineering, 2009, 36(1):165-176.
[5] HOU B, PATTOFATTO S, LI Y L, et al. Impact behavior of honeycombs under combined shear-compression. Part Ⅱ:Analysis[J]. International Journal of Solids & Structures, 2011, 48(5):698-705.
[6] RUAN D, LU G, WANG B, et al. In-plane dynamic crushing of honeycombs-a finite element study[J]. International Journal of Impact Engineering, 2003, 28(2):161-182.
[7] RUAN D, LU G. In-plane static and dynamic properties of aluminum honeycombs[J]. Australian Journal of Mechanical Engineering, 2006, 3(1).
[8] WOJCIECHOWSKI K W. Two-dimensional isotropic system with a negative poisson ratio[J]. Physics Letters A, 1989, 137(s1-2):60-64.
[9] ALDERSON A, ALDERSON K L, ATTARD D, et al. Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading[J]. Composites Science & Technology, 2010, 70(7):1042-1048.
[10] SCARPA F, BLAIN S, LEW T, et al. Elastic buckling of hexagonal chiral cell honeycombs[J]. Composites Part A:Applied Science & Manufacturing, 2007, 38(2):280-289.
[11] SPADONI A, RUZZENE M. Numerical and experimental analysis of the static compliance of chiral truss-core airfoils[J]. Journal of Mechanics of Materials & Structures, 2007, 2(5):965-981.
[12] 徐时吟, 黄修长, 华宏星. 六韧带手性结构的能带特性[J]. 上海交通大学学报, 2013, 47(2):167-172. XU Shi-yin, HUANG Xiu-chang, HUA Hong-xing. Study on the band structure of hexagonal chiral structures[J]. Journal of Shanghai Jiaotong University, 2013, 17(2):167-172.
[13] 肖锋. 舰艇抗冲防护覆盖层水下抗爆机理及实验研究[D]. 上海:上海交通大学, 2013. XIAO Feng. Shock resistance and experimental study of the coatings on warship subjected to underwater explosion[D]. Shanghai:Shanghai Jiao tong University, 2013.
[14] 库尔. 水下爆炸[M]. 北京:国防工业出版社, 1960.