通过引入动态面控制思想对扩张状态观测器及非线性状态误差反馈控制律进行改造,设计一种动态面自抗扰控制器,并将其用于海洋平台动力定位系统的控制问题上。动态面扩张状态观测器的设计是为了提高系统的扰动估计能力,动态面非线性状态误差反馈控制律的设计是为了提高系统的稳定性与控制效率。仿真实验表明,改进后的动态面自抗扰动力定位控制系统对扰动的估计能力明显提升,系统的抗扰能力与鲁棒性得到增强,同时其具有较好的控制品质和响应特性,进而提高了海洋平台的定位精度。
By introducing the dynamic surface control to reform the extended state observer and the non-linear state error feedback control law, a dynamic surface active-disturbance rejection controller is designed for dynamic positioning systems of offshore platforms. The dynamic surface extended-state observer is designed to strengthen the estimation ability to the disturbance of systems, while the dynamic surface non-linear state error feedback control law is designed to improve the stability and control efficiency of systems. Simulation results illustrate that the improved dynamic surface active-disturbance rejection-based dynamic positioning control systems can significantly improve the estimation ability to the disturbance, the robustness of the systems is improved greatly, and the systems can provide better control quality and faster response to achieve the enhancement of positioning accuracy of offshore platforms.
2017,39(10): 70-74,83 收稿日期:2016-06-29
DOI:10.3404/j.issn.1672-7649.2017.10.013
分类号:U664.8
基金项目:国家自然科学基金资助项目(61374063,61403170);江苏省“333工程”科研资助项目(BRA2015358);江苏省“六大人才高峰”资助项目(DZXX-025)
作者简介:和红磊(1991-),男,硕士研究生,研究方向为海洋平台动力定位、自抗扰控制等
参考文献:
[1] 赵志高, 杨建民, 王磊, 等. 动力定位系统发展状况及研究方法[J]. 海洋工程, 2002, 20(1):91-97.
[2] HAN J Q. From PID to active disturbance rejection control[J].IEEE Transactions on Industrial Electronics, 2009, 56(3):900-906.
[3] GAO Z. Scaling and bandwidth-parameterization based controller tuning[C]//. Proceedings of the American Control Conference. Denver, USA, 2003:4989-4996.
[4] 韩京清. 从PID技术到" 自抗扰控制"技术[J]. 控制工程, 2002, 9(3):13-18.
[5] 谢洪艳, 谈世哲. 基于ADRC的水面船舶动力定位控制技术及仿真研究[J].自动化技术与应用, 2010, 29(3):5-7.
[6] 高峰. 船舶动力定位自抗扰控制及仿真的研究[D]. 大连:大连海事大学, 2013.
[7] SWAROOP D, GERDES J, YIP P, et al. Dynamic surface control of nonlinear systems[C]//. Proceedings of the American Control Conference. Albuquerque, USA, 1997:3028-3034.
[8] SWAROOP D, GERDES J, YIP P, et al. Dynamic surface control for a class of nonlinear systems[J]. IEEE Transactions on Automatic control. 2000, 45(10):1893-1899.
[9] FU M Y, ZHANG A H, XU J L, et al. Robust adaptive dynamic surface path tracking control for dynamic positioning vessel with big plough[C]//. IEEE Oceans-San Diego. San Diego, CA, 2013:1-6.
[10] 杜佳璐, 杨杨, 胡鑫, 等. 基于动态面控制的船舶动力定位控制律设计[J]. 交通运输工程学报, 2014, 14(5):36-42.
[11] 边信黔, 付明玉, 王元慧. 船舶动力定位[M].北京:科学出版社, 2011.
[12] 贾欣乐, 杨盐生. 船舶运动数学模型——机理建模与辨识建模[M]. 大连:大连海事大学出版社, 1999.
[13] 韩京清. 自抗扰控制技术:估计补偿不确定因素的控制技术[M]. 北京:国防工业出版社, 2013.
[14] QI N M, QIN C M, SONG Z G. Improved ADRC cascade decoupling controller design of hypersonic vehicle[J]. Harbin Gongye Daxue Xuebao(Journal of Harbin Institute of Technology), 2011, 43(11):34-38.
[15] LIU W, PANG Y J. Research on dynamic simulation of DP for a deep watersemi-submersible platform[J]. Mechanical Engineering and Material Science, 2012, 42:642-645.