弹性支撑是减小管路系统噪声源向船体结构传递的主要措施,但安装数量较多且受安装条件限制,部分管路支撑直接与船体结构相连,导致弹性支撑也是振动传递的重要途径。本文利用Abaqus有限元软件计算单位激励下管路系统各弹性支撑点的频率响应特性,分析了弹性支撑安装间距、刚度及位置等因素对管路振动噪声特性的影响,提出管路系统弹性支撑的低噪声安装方法,为舰船管路系统弹性支撑设计提供了重要依据。
Pipeline's elastic support is the main measure to reduce pipeline system vibration energy transfer to the hull structure, But there are many elastic supports in the ship pipeline system and part of pipeline's elastic supports connected to the hull directly due to installation limitations, So that the elastic support is also a kind of important vibration transmission. This paper obtained frequency response characteristic of each elastic support's unit in the pipeline system under unit excitation by means of Abaqus finite element simulation, and the distance between two elastic supports, the stiffness of elastic supports and the location of elastic supports various parameters' influence on the vibration and noise characteristics are analyzed, And then presented the low noise installation methods of elastic support. Provided significant references to the low noise ship pipeline system elastic support design.
2017,39(10): 92-96 收稿日期:2016-09-05
DOI:10.3404/j.issn.1672-7649.2017.10.018
分类号:TB533
基金项目:国家自然科学基金资助项目(51509253);海军工程大学科研资助项目(425517K143)
作者简介:戴青山(1992-),男,硕士研究生,主要从事振动与噪声控制方面研究
参考文献:
[1] 尹志勇, 钟荣, 刘钟族. 管路系统振动噪声控制技术研究现状与展望[J]. 舰船科学技术, 2006, 2:23-28. YIN Zhi-yong, ZHONG Rong, LIU Zhong-zu. Piping system vibration and noise control technology research status and prospect[J]. Journal of Marine Science and Technology, 2006, 2:23-28.
[2] LIG X, PAIDOUSSIS M P. Stability, double degeneracy and chaos in cantilevered pipes conveying fluid[J]. International Journal of Non-linear Mechanics, 1994, 29(1):83-107.
[3] 蔡标华, 俞健, 白亚鹤. 舰船管路系统弹性减振设计与实验[J]. 舰船科学技术, 2011, 11:61-64. CAI Biao-hua, YU Jian, BAI Ya-he. Ship piping system elastic vibration reduction design and experiment[J]. Journal of Ship Science and Technology, 2011, 11:61-64.
[4] 柯兵, 周进华. 低噪声管路系统设计研究[J]. 舰船科学技术, 2006, 2:117-120. KE Bing, ZHOU Jin-hua. Low noise pipe system design and research[J]. Journal of Ship science and technology, 2006, 2:117-120.
[5] HE Tao, SUN Yu-dong, WU Wen-wei, et al. Low noise collocation on fluid pipeline system[J]. Journal of Ship Science and Technology, 2015, 9:1149-1158.
[6] 王艳林, 王自东, 宋卓斐. 潜艇管路系统振动噪声控制技术的现状与发展[J]. 舰船科学技术, 2008, 12:34-38. WANG Yan-lin, WANG Zi-dong, SONG Zhuo-fei, et al. The vibration and noise control technology of present situation and the development of submarine pipeline system[J]. Journal of Ship Science and Technology, 2008, 12:34-38.
[7] 李伟刚, 王春健, 李兵尚. 潜艇液压系统管路振动与噪声的分析控制[J]. 机床与液压, 2011, 7:70-73. LI Wei-gang, WANG Chun-jian, LI Bing-shang. The vibration analysis and noise control of submarine hydraulic pipeline system[J]. Journal of Hydraulic and Machine Tools, 2011, 7:70-73.
[8] 周艳丽, 陆波. 飞机液压管路支撑的有限元建模方式对应力分析的影响[J]. 民用飞机设计与研究, 2014, 113:84-87. ZHOU Yan-li, LIU Bo. The influence of finite element modeling of plane hydraulic line support on stress analysis[J]. Journal of Civil Aircraft Design and Research, 2014, 113:84-87.
[9] 闫辉, 姜洪源, 李瑰贤, 等. 航空发动机管路支撑用钢丝隔振器仿真研究[J]. 航空学报, 2006, 11:1080-1084. YAN Hui, JIANG Hong-yuan, LI Gui-xian, et al. Aeroengine pipe support wire vibration isolator simulation[J]. Journal of Aviation, 2006, 11:1080-1084.
[10] 施引, 朱石坚, 何琳. 舰船动力机械噪声及其控制[M]. 北京. 国防工业出版社, 1990. SHI Yi, ZHU Shi-jian, HE Lin. Ships machinery noise and its control[M]. Beijing. National defense industry press, 1990.