研究了含噪信号的压缩感知方法,分析得出,在压缩采样过程中,原始信号的信息得到保留,而噪声信号的信息则被压缩和丢失,从而在信号重构时起到降低噪声的性能。采用含有高斯噪声的舰船辐射信号为例,仿真实验表明,当信噪比小于20 dB时,总存在合理的观测值,使得重构信号与原始信号的均方差比含噪信号与原始信号的均方差更小,从而起到提高信噪比的作用。
For the problem of signal with noise in Compressed Sensing (CS), it is studied that, in the compression sampling process, the information of the pure signal is retained, but the information of the noisy signal is compressed and lost. Thereby the CS itself has the function of noise reduction. Taking the ship radiation signal with Gaussian noise as an example, when the Signal to Noise Ratio (SNR) is less than 20 dB, there is always a reasonable number of measurements to make the Mean Square Error (MSE) between reconstruction signal and pure signal is lower than the MSE between noisy signal and pure signal. So, it can increase the SNR indirectly.
2017,39(10): 112-116 收稿日期:2017-02-23
DOI:10.3404/j.issn.1672-7649.2017.10.022
分类号:TB53
作者简介:宁万正(1985-),男,硕士,工程师,研究方向为水声通信、反潜、压缩感知
参考文献:
[1] BARANIUK R. A lecture on compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4):118-121.
[2] CANDÈS E, ROMBERG J, TAO.T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans on Information Theory, 2006, 52(2):489-509.
[3] DONOHO D L. Compressed sensing[J], IEEE Trans on Information Theory. 2006, 52(4):1289-1306.
[4] NEEDELL D, TROPP J A. CoSaMP:Iterative signal recovery from incomplete and inaccurate samples[J]. Appl Comp Harmonic Anal, 2009, 26(3):301-321.
[5] LI Xiao-bo. The research of measurement matrix based on compressed sensing[D], Beijing:Beijing Jiaotong University, 2010.
[6] 周灿梅. 基于压缩感知的信号重建算法研究[D]. 北京:北京交通大学, 2010.