采用数值仿真方法,建立半穿甲战斗部对航母双层板侵彻效应的数值仿真计算模型,并计算战斗部以6种不同攻角侵彻目标的动态响应过程。结果表明,攻角对战斗部侵彻航母双层靶的能力有显著影响。随着初始攻角增加,战斗部的靶后余速下降,当初始攻角为20°和25°时,战斗部未能穿透航母的吊舱甲板。战斗部撞击吊舱甲板的攻角相对于初始攻角均有所增加,严重影响了战斗部对吊舱甲板的侵彻能力。战斗部对目标的侵彻破坏模式均属于延性扩孔和冲塞破坏模式。战斗部侵彻航母双层靶的过载较大且高过载持续时间长。当攻角大于10°时,战斗部在侵彻第1层靶板时,横向过载比较明显,导致战斗部结构出现不同程度的弯曲变形,这些因素给战斗部的结构完整性、装药稳定性和引信可靠性带来严峻挑战。该研究可用于指导半穿甲战斗部设计及其毁伤效应研究。
FEM models of semi-armor-piercing warhead penetrating double-layer aircraft carrier target are established by numerical simulation method, based on which the dynamic response processes of the warhead penetrating the target with six different attack angles are calculated. Attack angles have notable influence on penetration capability of the warhead. As initial attack angle is bigger, the residual velocity of the warhead decreases. For the instances of attack angle being 20° and 25°, the warhead failed to penetrate through the target. The attack angles of the warhead penetrating the car deck weaken penetration capability of the warhead to some extend. Ductility reaming damage mode and adiabatic plugging damage mode are exhibited in the penetration process. Durative high accelerations come forth in the penetration process, and when initial attack angle is larger than the value of 10°, the warhead suffered from an alternative lateral overload which leads an obvious structure distortion of the warhead. These factors above could lead to serious risk for the integrity of the projectile structure, the stability of the charge and reliability of the fuze. The research could provide reference for the warhead design and corresponding study on damage effect.
2017,(): 33-37 收稿日期:2016-09-21
DOI:10.3404/j.issn.1672-7649.2017.11.007
分类号:TB332
作者简介:董三强(1969-),男,副教授,研究方向为弹药毁伤效应
参考文献:
[1] 董三强, 王国亮, 余文力. 航母甲板侵彻效应的数值仿真模型研究[J]. 舰船科学技术. 2015, 37(315): 21-23.
DONG San-qiang, WANG Guo-liang, YU Wen-li. Research on numerical simulation model of warhead penetrating aircraft carrier target[J]. Ship Science and Technology. 2015, 37(9): 21-23.
[2] DONG S Q, WANG G L, GAO Y L, et al. Numerical simulations of semi-armor-piercing projectile penetrating aircraft carrier target with different attack angle[C]//ACAR, 2014: 331-337.
[3] DONG San-qiang, CAI Xing-hui, WANG Guo-liang, et al. Numerical simulations of semi-armor-piercing warhead penetrating aircraft carrier target[C]//MATEC Web of Conferences, 2015, 10003.
[4] 蓝岭. “尼米兹”级航母抗毁伤能力深化研究[J]. 鱼雷技术. 2002, 10(3): 8-13.
LAN Ling. The deepened research in the anti-damaged capability of the Nimitz class aircraft carrier[J]. Torpedo Technology. 2002, 10(3): 8-13.
[5] JONES N. Structural Impact [M]. (1st Edition, 1989) Paperback Edition Cambridge, Cambridge University Press, 1977: 403-405.
[6] LS-DYNA KEYWORD USER'S MANUAL[CP]. March 2003 Version 970.
[7] 段卓平. 半穿甲弹丸对加筋靶板侵彻的终点弹道的实验和理论研究[J]. 爆炸与冲击. 2005, 25(6): 547-552.
DUAN Zhuo-ping. The experimental and theoretical research for end-point trajectory of warhead penetrating ribbings structural target[J]. Explosion and Shock Waves. 25(6): 547-552.
[8] 张林, 张祖根, 秦晓云, 等. D6A、921和45钢的动态破坏与低压冲击特性[J]. 高压物理学报. 2003, 17(4): 305-310.
ZHANG Lin, ZHANG Zu-gen, QIN Xiao-yun, et al. Dynamic fracture and mechanical property of D6A, 921 and 45 steels under low shock pressure[J]. Chinese Journal of High Pressure Physic. 2003, 17(4): 305-310.
[9] 刘心德. F175和30CrMnSi钢的三种对比试验[J]. 宇航材料工艺. 1985(5): 29-33.
LIU Xin-de. Three comparative tests of F175 and 30CrMnSi steels[J]. Aerospace Materials and Technology. 1985(5): 29-33.