本文分析无动力推进水下探测器的推进原理及特点,分析无轴轮缘推进的特点,提出无动力推进与无轴轮缘推进联合的水下探测器推进系统,并对探测器壳体进行设计,对无动力系统浮心调节系统设计,对重心调节系统进行优化。探测器的外观为全封闭设计,采用4个位置矢量布置的无轮缘推进装置及变浮心、重心联合推进,消除了轴系和传动装置的损失以及螺旋桨的空泡损失,该探测器完整的外形使探测器隐蔽性更强、可靠性更高,该联合推进系统使探测器具有全向运动能力,并具有高度灵活的运动能力。
In this paper, the characteristics and the propulsion of the underwater prober are analyzed, and the characteristics of the non-axle edge propulsion are analyzed. The appearance of the detector is fully enclosed design, using the four position vector arrangement without flange joint propulsion system and the change of buoyancy, center of gravity, and control the state of detector and stealth, reduce the probe all attachments, no leakage of propeller shaft, rudder system structure, etc. Shaft and transmission loss and eliminates the propeller cavitations. This kind of combined propulsion system makes the probe with omnidirectional movement ability and highly flexible movement.
2017,(): 26-29 收稿日期:2017-06-28
DOI:10.3404/j.issn.1672-7649.2017.12.006
分类号:U674.941
作者简介:于志民(1972-),男,副教授(甲类一等轮机长),研究方向为轮机工程及其自动化
参考文献:
[1] 李景熹, 王树宗, 黄毅. 轮式水下无人探测器姿态估计仿真研究[J]. 舰船科学技术, 2006, 28(4): 40-42.
LI Jing-xi, WANG Shu-zong, HUANG Yi. Wheeled underwater spacecraft attitude estimation simulation research[J]. Ship Science and Technology, 2006, 28(4): 40-42.
[2] 钟宏伟, 韩雪, 周辉. 一种用于蛙人或有效载荷的水下新型运载器[J]. 舰船科学技术, 2013, 35(6): 47-51.
ZHONG Hong-wei, HAN Xun, ZHOU Hui. A new type of underwater vehicle used for frogmen or payloads [J] Ship Science and Technology, 2013, 35(6): 47-51.
[3] 陈晓伟, 杨明莉. 水下探测目标识别的BP网络模型的设计与实现[J]. 舰船科学技术, 2017, 39(2): 118.
CHENG Xiao-wei, YANG Ming-li. Detection of underwater target recognition of BP network design and implementation of the model[J]. Ship Science and Technology, 2017, 39(2): 118-120.
[4] 刘恕华. 水下机器人水动力性能分析与仿真[J]. 舰船科学技术, 2017, 39(2): 124-126.
LIU Ru-huan. Hydrodynamic performance analysis and simulation of underwater robots[J]. Ship Science and Technology, 2017, 39(2): 124-126.
[5] 刘洋. 基于遗传算法的水下无人潜器结构特性优化分析[J]. 舰船科学技术, 2015, 37(9): 145-148.
LIU Yang. Analysis of the structural characteristics of underwater unmanned submersible vehicles based on genetic algorithm[J]. Ship Science and Technology, 2015, 37(9): 145-148.
[6] 海光美. 非均匀光场能见度模型的建立与研究[J]. 舰船科学技术, 2017, 39(2): 186-188.
HAI Guang-mei. Establishment and research of uniform optical field visibility model[J]. Ship Science and Technology, 2017, 39(2): 186-188.
[7] Ola-Erik Fjellstad and Thorl. Fossen, Position/orientation control of an underactuatedflight object based on two degree-of-freedom PID control. Grad. Sch. of Natural Sci. &TechnoL, Okayama Univ., Okayama, Japan, Aug 2012: 1204-1209.
[8] 陈珂, 杨显照, 李燚航, 等. 无轴轮缘推进器内置电机防护材料及防护工艺综述[J]. 微特电机, 2016, 44(7): 83-87.
CHEN Ke, YANG Xian-zhao, LI Yi-hang, et al. Overview on the protective material and its anticorrosion technique of built-inmotors with shaftless rim-driven thrusters[J]. Small and Special Electrcal Machines, 2016, 44(7): 83-87.
[9] 谈微中, 严新平, 刘正林, 等. 无轴轮缘推进系统研究现状与展望 [J]. 武汉理工大学学报. 2015, 39(3): 601-605.
YAN Wei-zhong, YAN Xin-ping, LIU Zheng-lin, et al. Technology development and prospect of shaftless rim-driven propulsion system[J]. Journal of Wuhan University of Technology. 2015, 39(3): 601-605.