磁耦合传动装置作为水下大深度尾轴密封的有效方法,工作时钛合金隔离罩温升过高可导致结构发生形变,永磁体退磁。本文基于磁耦合传动装置的工作特点,建立2D和3D损耗模型,计算不同永磁体布置方式下隔离罩涡流损耗,择选出最小损耗布置方式。利用Fluent软件建立三维温度场有限元分析模型,对涡流损耗优化后的磁耦合传动装置,隔离罩、永磁体等主要部件瞬态温度场求解分析。仿真结果表明,永磁体轴向分4段时,隔离罩涡流损耗最小,各部件瞬态温升满足安全性能要求。
The magnetic coupling transmission is an effective method for the sealing of the underwater deep tail shaft. When the temperature rise of the titanium alloy isolation cover is exorbitant,it will lead to the deformation of the structure and the demagnetization of the permanent magnet. Based on the working characteristics of the magnetic coupling transmission, the 2D and 3D loss models are established in this paper. We calculated the eddy current loss of the shield under different permanent magnet arrangement to select the minimum loss one. The finite element analysis model of three-dimensional temperature field is established by using Fluent software. We also analyze the transient temperature field of main components such as magnetic coupling drive, isolation cover and permanent magnet when eddy current loss is minimum. The simulation results show that the eddy current loss of the shield reaches the smallest when the permanent magnet is divided into four segments, and the transient temperature of each component satisfies the safety performance requirement.
2017,(): 36-39 收稿日期:2017-07-04
DOI:10.3404/j.issn.1672-7649.2017.12.008
分类号:TP391.4
作者简介:符盼(1992-),男,硕士研究生,主要从事电动力装置热力学方面的研究工作
参考文献:
[1] 于雅莉, 赵波. 水下磁耦合器隔离套涡流损耗及系统传动效率分析[J]. 电工技术学报, 2014, 29(1): 15-22.
[2] 赵克中. 磁耦合传动装置的理论与设计[M]. 北京: 化学工业出版社, 2009.
[3] 王小雷, 樊晓波. 鱼雷磁耦合传动金属隔离罩分析与优化设计[J]. 鱼雷技术, 2014, 22(5): 347-351.
[4] 王梦文. 磁力耦合器隔离套涡流场与温度场的数值计算[J]. 机电工程, 2010(8), 40-47.
[5] CHARLESS J M. Magnetic coupling protects machinery[J]. Design New, 1999, 7: 26-28.
[6] SMITH A C, WILLIAMSON S, BENHAMA A, et al. Magnetic drive couplings[J]. IEEE-EMD Conference, 1998, 153(2): 289-294.
[7] (美)英克鲁佩勒(Incropera, F. P.)等著; 葛新石, 叶宏译. 传热和传质基本原理: 第六版[M]. 北京: 化学工业出版社, 2007.