针对水下航行环境中自治水下机器人(Autonomous Underwater Vehicles,AUV)航迹精确跟踪问题,提出一种基于模糊自适应滑模方法的AUV航迹跟踪控制算法。在建立AUV系统动力学模型基础上,将其运动通过变结构滑模控制律结合模糊逼近设计出AUV航迹跟踪控制系统,采用模糊系统实现模型未知干扰的自适应逼近,基于Lyapunov稳定性理论,讨论了闭环系统的稳定性。在考虑加入外界干扰的条件下使用Matlab/Simulink软件,进行数值仿真,模拟轨迹跟踪能够达到稳定并且较平滑连续跟踪预定航迹,对干扰有较好的抑制作用。仿真结果表明了所提控制方法的有效性。
In this paper, a control system is developed based on fuzzy adaptive sliding mode method for Autonomous Underwater Vehicles (AUV) precisely trajectory-tracking. With AUV dynamic model established, variable structure sliding mode strategy and fuzzy logic methods are adopted to design the path tracking controller. Environmental disturbances are compensated by the adaptive fuzzy algorithm. The stability of the control system is discussed using Lyapunov stability theory. Numerical simulations are conducted on Matlab/Simulink and show that the proposed approach can achieve smooth continuous outputs in the condition of environment disturbances. The ability of restraining interference is enhanced. The performance of the proposed control law is evaluated by simulation results.
2017,(): 53-58 收稿日期:2017-08-16
DOI:10.3404/j.issn.1672-7649.2017.12.012
分类号:TP242
基金项目:水电机械设备设计与维护湖北省重点实验室资助项目(2016KJX16)
作者简介:孙巧梅(1983-),女,讲师,主要从事船舶运动控制方向的研究
参考文献:
[1] 朱大奇, 杨蕊蕊. 生物启发神经动力学模型的自治水下机器人反演跟踪控制[J]. 控制理论与应用, 2012, 29(10): 1309-1316.
[2] 周超, 曹志强, 王硕, 等. 微小型仿生机器鱼设计与实时路径规划[J]. 自动化学报, 2008, 34(7): 772-777.
[3] 胡志强, 周焕银, 林扬, 等. 基于在线自优化PID算法的USV系统航向控制[J]. 机器人, 2013, 35(3): 263-268.
[4] 张利军, 齐雪, 赵杰梅, 等. 垂直面欠驱动自治水下机器人定深问题的自适应输出反馈控制[J]. 控制理论与应用. 2012, 29(10): 1371-1376.
[5] 俞建成, 张艾群, 王晓辉, 等. 基于模糊神经网络水下机器人直接自适应控制[J]. 自动化学报, 2007, 33(8): 840-846.
YU Jian-cheng, ZHANG Ai-qun, WANG Xiao-hui, et al. Direct adaptive control of underwater vehicles based on fuzzy neural networks[J]. Acta Atuomatica Sinica, 2007, 33(8): 840-846.
[6] LEE K W, KEUM W, SINGH S N, et al. Multi input submarine control via L1 adaptive feedback despite uncertainties[J]. Journal of System and Control Engineers, 2014, 228(5): 330-347.
[7] BAGHERI A, MOGHADDAM J J. Simulation and tracking control based on neural-network strategy and sliding-mode control for underwater remotely operated vehicle [J]. Neurocomputing, 2009, 72(8): 1934-1950.
[8] WALLACE M B, MAX S D, EDWIN K. Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller [J]. Robotics and Autonomous Systems, 2008, 56(8): 670-677.
[9] 魏延辉, 周卫祥, 贾献强, 等. AUV模型解耦水平运动多控制器联合控制[J]. 华中科技大学学报(自然科学版)2016, 44(4): 37-42.
[10] G CONTE, G P DE CAPUA, D SCARADOZZI. Designing the NGC system of a small ASV for tracking underwater targets [J]. Robotics and Autonomous Systems, 2016(76): 46-57.
[11] ZOOL H I, MOHD B M Mokhar, VINA W E P, et al. A robust dynamic region-based control scheme for an autonomous underwater vehicle [J]. Ocean Engineering, 2016(111): 155-165.
[12] GAO Fu-dong, PAN Cun-yun, HAN Yan-yan, et al. Nonliear traiectory tracking control of a new autonomous underwater vehicle in complex sea conditions [J]. Journal of Central South University, 2012, 19(7): 1859-1868.
[13] HNAGIL J, MINSUNG K, SON CHEOL Y. Second order sliding mode controller for autonomous underwater vehicle in the presence of unknown disturbances [J]. Nonlinear Dynamics, 2014, 78(1): 183-196.
[14] 贾鹤鸣, 张利军, 齐雪, 等. 基于神经网络的水下机器人三维航迹跟踪控制[J]. 控制理论与应用, 2012, 29(7): 877-883.
JIA He-ming, ZHANG Li-jun, QI Xue, et al. Three-dimensional path tracking control for autonomous underwater vehicle based on neural network[J]. Control Theory & Applications, 2012, 29(7): 877-883.
[15] LIU Yan-cheng, LIU Si-yuan, WANG Ning. Fully-tuned fuzzy neural network based robust adaptive tracking control of unmanned underwater vehicle with thruster dynamics [J]. Neurocomputing, 2016, 196: 1-13.
[16] JON E R, ASGEIR J S. KRISTIN Y P. Model-based output feedback control of slender-body underactuated AUVs: theory and experiments [J]. IEEE Transactions on Control Systems Technology, 2008, 16(5): 930-946.
[17] LIONEL L, BRUNO J. Robust nonlinear path-following control of AUV [J]. IEEE Journal of Oceanic Engineering, 2008, 33(2): 89-102.