结构冲击入水作为一种典型的流固耦合问题广泛存在于船舶与海洋工程领域,特别是作为海洋平台简化模型的平底结构有着重要的工程应用背景和学术研究价值。本文采用ALE算法对二维弹性平底结构等速冲击入水过程进行数值模拟和分析,分别采用Lagrange单元和Euler单元来表征结构和流体,并通过耦合算法实现对流固耦合过程的模拟,分别讨论不同质量、刚度及入水速度情况下空气垫现象对结构底部压力的影响。计算结果表明,平底结构入水冲击过程中,底部边缘处压力最先达到峰值,随后沿宽度方向向中心依次出现压力峰值,且结构等速冲击入水后的运动为自由振动。冲击压力的峰值随结构质量及刚度的增大而增大,同时冲击压力峰值与速度呈线性关系,随速度的增大而增大,底部斜升角对冲击压力峰值的影响十分显著。通过上述研究为工程应用中的结构强度设计提供重要依据。
As a typical fluid-structure coupling problem, structure impacting into water is widely used in the field of ship and ocean engineering, especially as a flat model of offshore platform. It has important engineering application background and academic research value. In this paper, the ALE algorithm is used to simulate and analyze the two-dimensional elastic flat-bottomed structures under constant velocity impact. The Lagrange element and Euler element are used to characterize the structure and fluid. The simulation of the fluid-solid coupling process is realized by the coupling algorithm. The influence of air cushion on the bottom pressure of the structure, the conditions of mass, stiffness and water velocity are discussed. The results show that the pressure at the bottom edge of the flat bottom structure first reaches the peak value, and then the pressure peak appears in the direction of the width direction, and the motion after the constant velocity impact into the water is free vibration. The peak value of impact pressure increases with the increase of structure mass and stiffness, and the peak value of shock pressure has a linear relationship with velocity, increases with the increase of velocity, and the effect of the bottom angle on the peak value of impact pressure is significant. The above study provides an important basis for structural strength design in engineering application.
2017,(): 125-133 收稿日期:2016-11-10
DOI:10.3404/j.issn.1672-7649.2017.12.027
分类号:U663
基金项目:国家自然科学基金资助项目(10702022);华中科技大学青年教师基金资助项目(0114140034)
作者简介:杨力(1993-),男,硕士研究生,研究方向为计算流体动力学、流固耦合
参考文献:
[1] KARMAN TV The impact of seaplane floats during landing[R]. Washington DC, USA: National Advisory Committee for Aero-nautics, NACA Technical Notes 321, 1929.
[2] WAGNER V H. Phenomena associated with impacts and sliding on liquid surfaces[J]. Z Angew Math Mech, 1932, 12(4): 193-215.
[3] WORTHINGTON A M. Impact with a liquid surface studied with aid of instantaneous photography[J]. Philosophical Transactions of the Royal Society of London, 1900, 194A: 175-199.
[4] CHUANG S L. Experiments on flat-bottom slamming [J]. Journal of Ship Research, 1966, 10(1): 10-27.
[5] 黄震球, 张文海. 减小平底体砰击的试验研究[C]//武汉造船工程学会年会论文集(下), 1985: 245-252.
[6] 李国钧, 黄震球. 平底物体对水面的斜向冲击[J], 华中理工大学学报, 1995, 23(1): 145-147.
[7] 卢炽华, 何友声. 二维弹性结构入水冲击过程中的流固耦合效应[J], 力学学报, 2000, 36(2): 129-140.
[8] 夏斌, 陈震, 肖熙. 弹性平底海洋结构物入水冲击的仿真分析[J]. 中国海洋平台, 2005, 20(1): 22-28.
[9] 陈震, 肖熙. 平底结构砰击压力峰值分析[J], 上海交通大学学报, 2006, 40(6): 983-987.
[10] 陈震, 肖熙. 平底结构砰击压力的分布[J], 中国造船, 2005, 46(4): 97-103.
[11] 陈震, 肖熙. 空气垫在平底结构入水砰击中作用的仿真分析[J], 上海交通大学学报, 2005, 39(5): 670-673.
[12] 陈震, 肖熙. 基于神经网络的平底结构砰击压力预报[J]. 海洋工程, 2005, 23(2): 26-31.
[13] MATEJ V, STPHAN M, HEINER M, et al. Fluid models in LS-DYNA and their interaction with a structure in dynamic simulations[C]// ASME Pressure Vessels and Piping Division Conference. 2005.
[14] OGER G, DORING M, ALESSANDRINI B, et al. Two-dimensional SPH simulations of wedge water entries[J]. Journal of Computational Physics, 2005, 213: 803-822.
[15] GONG Kai, LIU Hua, WANG Benlong. Water entry of a wedge based on SPH model with an improved treatment[J]. Journal of Hydrodynamics. 2009, 21(6): 750-757.
[16] 吴家鸣, 龚国围, 朱良生. 平底结构砰击作用下限制水域的流体动力特性[J], 华南理工大学学报, 2008, 36(10): 97-107.
[17] HU Xiao-zhou, RAO Qiu-hua, ZHENG Hong-qiang. Numerical simulation of flatted-bottom seafloor mining tool and water entry process[C]// Fifth Conference on Measuring Technology and Mechatronics Automation. 2013.