本文对某型船用发电机转子及流体的耦合温度场进行数值模拟,依据CFD(Computational Fluid Dynamics)和数值传热学的基本原理,并结合该型船用发电机的结构特点,依次分别建立发电机转子耦合温度场的物理模型和数学模型,然后通过给定边界条件,选择RNG k-ε 计算模型对该型发电机转子的温度场进行数值模拟。在稳定工况下,得到发电机转子中流体域和固体域的温度场分布,并对该型船用的转子温度场进行分析,得到一些有用的结论,这些结论为发电机的设计与优化提供理论依据。
The coupled temperature field of marine generator's rotor and fluid was simulated numerically. Based on the fundamental of CFD and numerical heat transfer, the physical and mathematical temperature field model in the solution domain of marine generator's rotor are built respectively on the basis of the structural features of marine generator. RNG k-ε model is used to simulate the temperature field of marine generator's rotors numerically by the given boundary conditions in the domain. The temperature distributions of fluid part and solid parts of marine generator's rotors and fluid regions are obtained under the condition of stable condition. Then the temperature distributions are analyzed. And some useful conclusions, which provide the theoretical basis for the optimization and design of marine generator, were got.
2017,(): 153-157 收稿日期:2016-10-09
DOI:10.3404/j.issn.1672-7649.2017.12.032
分类号:TM31
作者简介:冯国增(1971-),男,硕士,副教授,主要从事两相流理论与技术、船舶制冷与空调等方面的研究
参考文献:
[1] 路义萍, 李伟力. 大型空冷汽轮发电机转子温度场数值模拟[J]. 中国电机工程学报, 2007, 27(12): 7-13.
LU Yi-ping, LI Wei-li. Numerical simulation of temperature field in rotor of large turbo generator with air-coolant[J]. Proceedings of the CSEE, 2007, 27(12): 7-13.
[2] 殷忠敏, 赵海志, 袁媛. 船舶发电机智能诊断系统设计与研究[J]. 舰船科学技术, 2016, 38(6A): 85-87.
YIN Zhong-min, ZHAO Hai-zhi, YUAN Yuan. Design and research of marine generator intelligent diagnosis system[J]. Ship Science and Technology, 2016, 38(6A): 85-87.
[3] 刘清, 王滔. 用数值模拟仿真法计算电机内部流场分布[J]. 电机技术, 2015, (06): 10-12.
[4] 邰永, 刘赵淼. 感应电机全域三维瞬态温度场分析[J]. 中国电机工程学报, 2010, 30(30): 114-120.
TAI Yong, LIU Zhao-miao. Analysis on three-dimensional transient temperature field of induction motor[J]. Proceedings of the CSEE, 2010, 30(30): 114-120.
[5] 丁树业, 郭保成, 冯海军, 等. 变频控制下永磁同步电机温度场分析[J]. 中国电机工程学报, 2014, 34(9): 1368-1375.
[6] 佟文明, 程雪斌, 舒圣浪. 高速永磁电机流体场与温度场的计算分析[J]. 电工电能新技术, 2016, 35(5): 23-28.
[7] 李东和. 车用油冷电机温度场分析[J]. 微特电机, 2016, (07): 37-40.
[8] 冯桂宏, 张书伟, 张炳义, 等. 挤塑机直驱永磁电机温度场的计算[J]. 机电工程, 2016, 33(01): 96-100.
FENG Gui-hong, ZHANG Shu-wei, ZHANG Bing-yi, et al. Temperature field calculation of the extrusion molding machine direct-drive permanent magnet motor[J]. Journal of Mechanical & Electrical Engineering, 2016, 33(01): 96-100.
[9] 王晓远, 高鹏. 电动汽车用油内冷永磁轮毂电机三维温度场分析[J]. 电机与控制学报, 2016, 20(03): 36-42.
[10] 王越, 张学义, 史立伟, 等. 绕线方式对永磁同步电动机温度场的影响分析[J]. 微电机, 2016, 49(03): 18-21.
WANG Yue, ZHANG Xue-yi, SHI Li-wei, et al. Analysis of temperature field for permanent magnet synchronous motor with winding mode[J]. Micromotors, 2016, 49(03): 18-21.
[11] 赖松林, 曹卉, 刘崇军, 等. 大推力永磁直线同步电机温度场计算与分析[J]. 微电机, 2016, 49(04): 35-37.
[12] 温志伟, 顾国彪. 实心同极电动机转子温度场计算[J]. 大电机技术, 2005, (02): 1-5.
WEN Zhi-wei, GU Guo-biao. Calculation of rator temperature field for solid pole synchronous motor[J]. Large Electric Machine and Hydraulic Turbine, 2005, (02): 1-5.
[13] 魏永田, 孟大伟, 温嘉斌. 电机内热交换[M]. 北京: 机械工业出版社, 1998.