舰船舱室内爆炸载荷主要包含瞬态多峰值冲击波和持续时间较长的准静态超压,为了研究WENO格式精度对舱室内爆炸载荷影响规律,基于Fortran平台,采用3阶、5阶、7阶WENO有限差分格式,开发了高精度舱室内爆炸载荷三维数值计算程序。采用Sod激波管、双爆轰波碰撞、激波与熵波相互作用等经典算例初步考察了各数值格式的计算性能。开展了封闭舱室、泄压舱室内爆炸载荷数值计算,探讨了WENO格式精度对舱室内爆炸载荷影响规律。研究表明:WENO格式精度对舱室内爆炸冲击波载荷影响较大,对舱室内爆炸准静态超压载荷影响较小。
Blast load in confined cabin mainly contains multiple peaks shock waves and long duration quasi-static overpressure. In order to investigate on the influence of accuracy of WENO schemes on the blast load inside cabin, a high-resolution 3D code was developed in the present work. 3th, 5th and 7th WENO finite difference scheme were implemented in the code to capture the shock waves generated by condensed explosives in confined cabin. Several Riemann problems such as Sod shock tube, interacting blast waves and shock entropy wave interaction were simulated to investigate on computing performance of the schemes preliminary. Then, the code was used to conduct the simulation of blast waves in closed cabin and venting cabin and the influence of accuracy of WENO schemes on the blast load was discussed as well. It is indicated that the accuracy of WENO schemes has great effect on the blast waves and less effect on the quasi-static overpressure.
2018,(): 9-16 收稿日期:2016-12-22
DOI:10.3404/j.issn.1672-7649.2018.01.002
分类号:O354.5
基金项目:国家自然科学基金资助项目(51409202);国防基础研究资助项目(B1420133057)
作者简介:徐维铮(1991-),男,博士研究生,研究方向为舱室内爆炸波高精度数值计算方法及三维数值计算程序开发
参考文献:
[1] WU C, LUKASZEWICZ M, SCHEBELLA K, et al. Experimental and numerical investigation of confined explosion in a blast chamber [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 737-750.
[2] 侯海量, 朱锡, 李伟, 等. 舱内爆炸冲击载荷特性实验研究 [J]. 船舶力学, 2010, 14(8): 901-907.
HOU Hai-liang, ZHU Xi, LI Wei, et al. Experimental studies on characteristics of blast loading when exploded inside ship cabin [J]. Journal of Ship Mechanics, 2010, 14(8): 901-907.
[3] 孔祥韶, 吴卫国, 李俊, 等. 角隅结构对舱内爆炸载荷影响的实验研究 [J]. 中国造船, 2012(3): 40-50.
KONG Xiang-shao, WU Wei-guo, LI Jun, et al. Experimental research of influence of corner structure on blast loading under inner explosion[J]. Chinese Journal of Ship Research, 2012(3): 40-50.
[4] 侯海量, 朱锡, 梅志远. 舱内爆炸载荷及舱室板架结构的失效模式分析 [J]. 爆炸与冲击, 2007, 27(2): 151-158.
HOU Hai-liang, ZHU Xi, MEI Zhi-yuan. Study on the blast load and failure mode of ship structure subject to internal explosion [J]. Explosion and Shock Waves, 2007, 27(2): 151-158.
[5] 孔祥韶, 吴卫国, 李晓彬, 等. 舰船舱室内部爆炸的数值模拟研究 [J]. 中国舰船研究, 2009, 4(4): 7-11.
KONG Xiang-shao, WU Wei-guo, LI Xiao-bin, et al. Numerical simualtion of cabin structure under inner explosion[J]. Chinese Journal of Ship Research, 2009, 4(4): 7-11.
[6] 樊壮卿, 王伟力, 黄雪峰, 等. 典型舱室内爆炸仿真分析 [J]. 工程爆破, 2015, 21(3): 13-17.
FAN Zhuang-qing, WANG Wei-li, HUANG Xue-feng, et al. Simulation analysis on typical cabin internal explosion[J]. Engineering Blasting, 2015, 21(3): 13-17.
[7] 陈攀, 刘志忠. 舱室内爆冲击波载荷特性及影响因素分析 [J]. 舰船科学技术, 2016, 38(3): 43-48.
CHEN Pan, LIU Zhi-zhong. Research on loading of explosive and influencing factors inside closed cabin[J]. Ship Science and Technology, 2016, 38(3): 43-48.
[8] HARTEN A. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 135(3): 357-393.
[9] HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes, Ⅲ [J]. Journal of Computational Physics, 1987, 71(2): 231-303.
[10] ZHANG H, ZHUANG F. NND schemes and their applications to numerical simulation of two-and three-dimensional flows*[M]//JOHN W H, THEODORE Y W. Advances in Applied Mechanics. Elsevier. 1991: 193-256.
[11] LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes [J]. Journal of Computational Physics, 1994, 115(1): 200-212.
[12] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes [J]. Journal of Computational Physics, 1996, 126(1): 202-202.
[13] SHU C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws [M]. Springer Berlin Heidelberg. 1998: 325-432.
[14] SHU C W. High order weighted essentially nonoscillatory schemes for convection dominated problems [J]. Siam Review, 2009, 51(1): 82-126.
[15] 谢昌坦. 气—水可压缩流物质界面的R-M不稳定性研究 [D]. 哈尔滨: 哈尔滨工程大学, 2011.
XIE Chang-tan. The study on R-M instability of the material interface in gas-water compressible flow[D]. Harbin: Harbin Engineering University Master of Engineering, 2011.
[16] BALSARA D S, SHU C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy [J]. Journal of Computational Physics, 2000, 160(2): 405-452.
[17] SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes [J]. Journal of Computational Physics, 1988, 77(2): 439-471.
[18] SOD G A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws [J]. Journal of Computational Physics, 1978, 27(1): 1-31.
[19] WOODWARD P, COLELLA P. Colella, P. The numerical simulation of two-dimensional fluid flow with strong shocks[J]. Journal of Computational Physics, 1984, 54(1): 115-173.
[20] ANDERSON C E, BAKER W E, WAUTERS D K, et al. Quasi-static pressure, duration, and impulse for explosions (e. g. HE) in structures [J]. International Journal of Mechanical Sciences, 1983, 25(6): 455-464.