基于有限元软件Ansys/LS-DYNA,对钢制梯形波纹夹层板在低速碰撞载荷作用下的动态响应进行数值仿真研究,分析碰撞能量、冲头直径大小、碰撞位置和冲头撞击方向对夹层板动响应特性的影响。结果表明,随着碰撞能量从100 J增加到400 J,面板变形呈现出线性增加的趋势,碰撞能量达到一定水平后,结构出现损伤破坏,并且发现这种损伤的发生存在相对恒定的临界值,上面板吸能占比减小了30.5%,芯层和下面板吸能占比依次增加了12.4%,18.1%。冲头直径过小会带来明显的载荷局部效应,碰撞位置位于芯层胞元跨中时芯层无法对冲头进行直接支撑,这都会引起上面板的撕裂破坏,甚至被冲头贯穿。随着冲头撞击角度增加,上面板的撕裂破口逐渐由横向变为纵向,夹层板整体的能量吸收速率逐渐变大。在给定的载荷状况下,冲头30°撞击时,夹层板的耐撞性能较优;冲头90°撞击时,夹层板的耐撞性能较差。
The dynamic response of the trapezoidal corrugated steel sandwich panels under low velocity impact load was investigated by employing the FEM code Ansys/LS-DYNA. The influences of impact energy, impactor diameter, impact location and impact angle on the sandwich panel performance were specifically analyzed. Results show that the displacement of the top face and bottom face increases linearly with the increase of impact energy from 100 J to 400 J. The panel begins to damage when the impact energy reaches a certain level. And there is a relatively constant critical value for the damage of the top face.The absorbed energy of the top face decreases by 30.5%, while that of core and bottom face increases by 12.4% and 18.1%. Small impact diameter will increase the locality of impact load and the core is unable to directly support the impactor when the middle of core is impacted, both of which can cause a tearing or penetration failure on the top face. The tearing on the top face is gradually changing from horizontal to vertical, and the energy absorption rate of the sandwich panel increases gradually with the increase of the impact angle. It is found that under the given load condition, the load carrying capacity of the sandwich panel is relative strong at 30 degrees but weak at 90 degrees.
2018,(): 27-34 收稿日期:2017-02-06
DOI:10.3404/j.issn.1672-7649.2018.01.005
分类号:U661.43
作者简介:陈凯(1991-),男,硕士研究生,研究方向为结构冲击动力学
参考文献:
[1] 陈杨科, 何书韬, 刘均, 等. 金属夹层结构的舰船应用研究综述[J]. 中国舰船研究, 2013, 8(6): 6-13.
CHEN Yang-ke, HE Shu-tao, LIU Jun, et al. Application and prospect of steel sandwich panels in warships[J]. Chinese Journal of Ship Research, 2013, 8(6): 6-13.
[2] 王自力, 张延昌. 基于夹层板的单壳船体结构耐撞性设计[J]. 中国造船, 2008, 49(01): 60-65.
WANG Zi-li, ZHANG Yan-chang. Single hull ship structure crashworthy design based on sandwich panel[J]. Shipbuilding of China, 2008, 49(01): 60-65.
[3] 张延昌, 胡宗文, 俞鞠梅, 等. 折叠式夹层板横向吸能特性研究[J]. 振动与冲击, 2015, 34(14): 115-122.
ZHANG Yan-chang, HU Zong-wen, YU Ju-mei, et al. Lateral crushing energy absorption performance of corrugated cores sandwich panels[J]. Journal of Vibration and Shock, 2015, 34(14): 115-122.
[4] 张延昌, 王自力, 顾金兰, 等. 夹层板在舰船舷侧防护结构中的应用[J]. 中国造船, 2009, 50(4): 36-44.
ZHANG Yan-chang, WANG Zi-li, GU Jin-lan, et al. Application of sandwich panel in anti-shock design of warship's side structure[J]. Shipbuilding of China, 2009, 50(4): 36-44.
[5] 张延昌, 张世联, 翟高进. 基于折叠式夹层板船体结构耐撞性设计[J]. 船舶工程, 2009, 31(6): 1-5.
ZHANG Yan-chang, ZHANG Shi-lian, ZHAI Gao-jin, et al. Hull structural crashworthy design based on folding sandwich panel[J]. Ship Engineering, 2009, 31(6): 1-5.
[6] RUBINO V, DESHPANDE VS, FLECK NA. The dynamic response of end-clamped sandwich beams with a Y-frame or corrugated core[J]. International Journal of Impact Engineering, 2008, 35(8): 829-844.
[7] ST-PIERRE L, DESHPANDE VS, FLECK NA. The low velocity impact response of sandwich beams with a corrugated core or a Y-frame core[J]. International Journal of Mechanical Sciences, 2015(91): 71-80.
[8] HOU S, ZHAO S, REN L, et al. Crashworthiness optimization of corrugated sandwich panels[J]. Materials & Design, 2013(51): 1071-1084.
[9] ZHANG P, CHENG Y, LIU J, et al. Experimental and numerical investigations on laser-welded corrugated-core sandwich panels subjected to air blast loading[J]. Marine Structures, 2015(40): 225-246.
[10] MOHOTTI D, ALI M, NGO T, et al. Out-of-plane impact resistance of aluminium plates subjected to low velocity impacts[J]. Materials & Design, 2013(50): 413-426.