本文针对冰区作业的海上风机进行动力响应分析与疲劳损伤计算。采用Kaimal风速谱进行风载荷计算。采用Kärnä冰力谱进行冰载荷计算。分别进行风载荷、冰载荷与风冰联合作用3种不同工况下的海上风机动力响应分析与疲劳损伤评估。结果表明,风载荷作用下塔筒顶端位移要远大于冰载荷作用。风冰联合作用下风机在泥面处的支座反力与弯矩均大于单一载荷的作用。冰载荷作用下风机的疲劳损伤小于风载荷所造成的疲劳损伤,但风冰联合作用下风机的疲劳损伤均大于任一载荷单独作用。采用DNV方法计算得到的疲劳损伤值较接近风冰载荷联合作用计算结果,且偏于保守。
In this paper, the dynamic response analysis and fatigue damage calculation was carried out for offshore wind turbine. Wind load was calculated with Kaimal wind speed spectrum and ice load with Kärnä ice force spectrum. The dynamic response analysis and fatigue damage assessment of offshore wind turbine were implemented under wind load, ice load and combination of them respectively. The results indicated that the displacement at the top of the tower under wind load was much larger than that of ice load. Bearing reaction and bending moment of offshore wind turbine at the mudline under joint of wind and ice load were larger than the function of the single load. The fatigue damage of offshore wind turbine under wind load was less than that caused by wind load. However, the fatigue damage of offshore wind turbine subjected to combined effect of wind and ice load was greater than that of any load. The fatigue damage calculated by DNV method was closer to that caused by joint of wind and ice load and it was conservative.
2018,(): 81-85 收稿日期:2017-04-07
DOI:10.3404/j.issn.1672-7649.2018.01.014
分类号:P751
作者简介:张毅(1991-),男,硕士研究生,研究方向为船舶与海洋工程结构疲劳
参考文献:
[1] KÄRNÄ T, KAMESAKI K, TSUKUDA H. A numerical model for for dynamic ice-structure interaction[J]. Computers and Structures, 1999, 72: 645-668.
[2] International Electrical Commission. IEC 61400-3, Wind turbines-Part 3: Design requirements for offshore wind turbines [S]. London, 2001.
[3] 王翎羽, 徐继祖. 冰与结构动力相互作用的理论分析模型[J]. 海洋学报, 1993, 15(3): 140-146.
[4] YUE Q, GUO F, KÄRNÄ T. Dynamic ice forces of slender vertical structures due to ice crushing[J]. Cold Regions Science and Technology, 2009, 56: 77-83.
[5] WANG Qi. Ice-induced vibrations under continuous brittle crushing for an offshore wind turbine[D]. Delft: Technische Universiteit Delft, 2015.
[6] WELLS E M. An assessment of surface ice sheet loads and their effects on an offshore wind turbine structure[D]. Toledo: The University of Toledo, 2012.
[7] 方华灿, 徐发彦, 陈国明. 冰区海上平台管节点疲劳寿命计算的新方法[J]. 中国海洋平台, 1997, 12(6): 259-263.
[8] 黄焱, 马玉贤, 罗金平, 等. 渤海海域单柱三桩式海上风电结构冰激振动分析[J]. 海洋工程, 2016, 34(5): 1-10.
HUANG Yan, MA Yu-xian, LUO Jin-ping, et al. Analyses on ice induced vibrations of atripod piled offshore wind turbine structure in Bohai Sea[J]. The Ocean Engineering, 2016, 34(5): 1-10.
[9] International Electrical Commission. IEC 61400-1, Wind turbines-Part 1.: Wind turbines[S]. London, 2005.
[10] VERITAS D N. DNV-RP-C205, Environmental conditions and environmental loads[S]. Oslo, 2010.
[11] VEERS P S. Three-dimensional wind simulation[R]. NM: Sandia National Laboratories, 1988.
[12] KUMH M. Dynamic and design optimization of offshore wind energy conversion system[D]. Delft: Technische Universiteit Delft, 2001.
[13] International Organization for Standardization. ISO 19906, Petroleum and natural gas industries-Arctic offshore structures[S]. Switzerland, 2012.
[14] 张增海, 曹越男, 赵伟. 渤海湾海域风况特性分析与海-陆风速对比分析[J]. 海洋预报, 2011, 28(6): 33-39.
ZHANG Zeng-hai, CAO Yue-nan, ZHAO Wei. wind characteristics and land-sea wind speed comparison in the Bohai Bay[J]. Marine Forecasts, 2011, 28(6): 33-39.
[15] 中国海洋总公司. Q/Hsn 3000-2002, 中国海海冰条件及应用规定[S]. 北京, 2002.
[16] 吴龙涛, 吴辉碇, 李万彪, 等. 渤海冰漂移对海面风场、潮流场的响应[J]. 海洋学报, 2005, 27(5): 15-21.
WU Long-tao, WU Hui-ding, LI Wan-biao, et al. Sea ice drifts in response to winds and tide in the Bohai Sea[J]. Acta Oceanologica Sinica, 2005, 27(5): 15-21.
[17] HUANG W, MOAN T. Fatigue under combined high and low frequency loads[C]//25th International Conference on Offshore Mechanics and Arctic Engineering, Hanburg, 2006
[18] TEMPEL V D. Design of support structures for offshore wind turbines[D]. Delft: Technische Universiteit Delft, 2006.
[19] Det Norske Veritas. DNV-RP-C203, fatigue design of offshore steel structure[S]. Oslo, 2011.
[20] HAN C S, MA Y L. A practical method for combination of fatigue damage subjected to low-frequency and high-frequency Gaussian random processes[J]. Applied Ocean Research, 2016, 60: 47-60.