海上激光雷达测风浮标系统在使用的灵活性、测风能力和成本等方面,相对于海上测风塔具有绝对优势,能够更好地满足海上风剖面测量的发展需求。针对浮动式激光雷达测风浮标(FLiDAR Buoy)系统的研发,提出新型三体组合式激光雷达测风浮标体的概念设计,并研究了其幅频运动特性。考虑测风浮标的稳性、运动响应和设备搭载的要求,对浮标体的结构及技术性能进行概念设计,并对主要搭载设备进行布置;在风浪联合作用下,对浮标体的完整稳性进行计算和分析,依据规则对其稳性衡准数K进行校核;忽略浮标体甲板以上的结构建立水动力模型,采用三维势流理论和Morison公式,计算分析浮标体的幅频运动响应特性,重点研究了浪向、水深和单体间距对浮标体RAOs的影响。结果表明,新型的浮标体设计较为合理,幅频运动性能良好,满足稳性的要求,浪向和单体间距对其RAOs影响较大,水深变化对其影响较小。
Floating LiDAR (light detection and ranging) buoy (FLB) systems are a flexible and particularly cost-effective alternative to the conventional meteorological mast solution, and it can better meet the development demand of offshore wind profile measurement. In response to the R&D of FLiDAR buoy system, a conceptual design of innovative triple-hull combined FLiDAR Buoy has been given, and its frequency domain characteristics are studied. According to the stability, motion response and equipment requirements, the structural composition and technical performance of the buoy hull are designed, and the major equipment that mounted on the hull are arranged. Taking the combined effects of wind and waves into account, intact stability are studied, moreover according to the rule, it is checked for its stability criterion numeral K. Ignoring the structure of buoy deck above, hydrodynamic model is established. Using 3D potential flow theory and Morison equation, its frequency domain motion response characteristics are calculated and analyzed. At the same time, the research is mainly focused on the impact of wave direction, depth of water and single hull spacing on the RAOs of buoy. It is shown that the new type of buoy hull design is more reasonable, having a better performance of frequency domain characteristics and meeting the requirements of stability. Furthermore, wave direction and single hull spacing has a larger effect on RAOs, while the changes of water depth almost have no effect on its RAOs.
2018,(): 86-93 收稿日期:2016-10-18
DOI:10.3404/j.issn.1672-7649.2018.01.015
分类号:P715
基金项目:江苏省普通高校研究生科研创新计划资助项目(YSJ15S-03)
作者简介:薛洋洋(1991-),男,硕士研究生,研究方向为海洋浮标水动力性能研究
参考文献:
[1] PENA A, HASAGCR C B, GRYING S, et al. Offshore wind profiling using light detection and ranging measurements[J]. Wind Energy. 2009, 12(2): 105-12.
[2] LIAO Zhi-yi, ZHANG Heng-wen. The application of floating lidar wind profiling systemon wind power[J]. Journal of Mechatronic Industry, 2012, 10(355): 111-121.
[3] AXYS Technologies Inc. Windsentinel-Race-Rocks-trial-report[EB/OL]. AXYSTechnologies, Sydney, BC, 2010. http://www.axys-technologies.com/wp-content/uploads/2010/3/Windsentinel-Race-Rocks-trial-report.pdf.
[4] Fugro International Group.SEAWATCH Wind LiDAR Buoy[EB/OL]. Fugro OCEANOR AS, Sandnes, Norwa, 2013. http://www.ocean-or.com/seawatch/buoys-and-sensor/SW_Wind_LiDAR.
[5] FRAUNHOFER IWES. Offshore wind resource assessment with Fraunhofer IWES wind LiDAR buoy[EB/OL]. Fraunhofer IWES, Brerhaven, germany, 2013. http://www.windenergie. iwes.fraunhfer.de/content/dam/windenergie/en/document/Factsheets_english/Datenblatt_boje_engl_web.pdf.
[6] 王军成. 海洋资料浮标原理与工程[M]. 北京: 海洋出版社, 2013 : 121-122.
[7] 中国船级社. 海上移动平台入级与建造规范[S]. 北京: 人民交通出版社, 2005.
[8] 余小川, 谢永和, 李润培, 等. 水深对超大型FPSO运动响应与波浪载荷的影响[J]. 上海交通大学学报, 2005, 39(5): 674-677.
YU Xiao-chuan, XIE yong-he, LI Run-pei, et al. The influence of water depth on motion response and wave induced loads of a large FPSO[J]. Journal of Shanghai Jiaotong University. 2005, 39(5): 674-677.
[9] 盛振邦, 刘应中. 船舶原理(上册)[M]. 上海: 上海交通大学出版社, 2009.
[10] PITTER M, BURIN E R, MEDLEY J, et al. Performance stability of zephIR in high motion environments[C]//EWEA2014, Spain, 2014, 10: 1-13.