为解决对水上未知目标的定位估计,充分利用接收信号,提出一种基于小波变换与傅里叶变换相结合的信号处理方法。采用中北大学研制的十字梁结构的MEMS矢量水听器接收声源信号,通过后续电路把声压信号转换成电压信号。先进行窄带滤波,保存有用信号频带;然后选择合适的小波阈值及小波基对信号进行小波降噪处理,减少低频噪声干扰,提高输出信噪比,为后续的信号处理及水声定位提供便利;最后基于MUSIC算法,结合直方图法进行目标方位估计,仿真结果表明,这种方法将定位精度提高到3°。
In order to solve the position estimation of unknown targets on the water and make full use of the received signals, a signal processing method based on wavelet transform and Fourier transform is proposed. The MEMS vector hydrophone, developed by North University of China, is used to receive the sound source signal, and the sound pressure signal is converted into the voltage signal by the follow-up circuit. And then select the appropriate wavelet threshold and wavelet based on the wavelet denoising of the signal processing to reduce low-frequency noise interference and improve the output signal to noise ratio, for the subsequent signal processing and underwater acoustic location to facilitate; Finally, based on the MUSIC algorithm and the histogram method, the azimuth estimation is carried out. The simulation results show that this method improves the positioning accuracy to 3°.
2018,(): 130-134 收稿日期:2017-02-17
DOI:10.3404/j.issn.1672-7649.2018.01.023
分类号:TB566
基金项目:国家自然科学基金资助项目(61127008)
作者简介:尚珍珍(1992-),女,硕士研究生,主要从事水声信号处理及定位算法研究
参考文献:
[1] R. J. 尤立克. 水声原理[M]. 哈尔滨: 哈尔滨工程大学出版社, 1990: 67-75.
[2] 李启虎. 进入21世纪的声纳技术[J]. 应用声学, 2002, 21(1): 13-18.
[3] 杨德森, 洪连进. 矢量水听器原理及应用引论[M]. 北京: 科学出版社, 2009.
[4] 彭玉华. 小波变换与工程应用[M]. 北京: 科学出版社, 1999.
[5] 陈尚. 硅微仿生矢量水声传感器研究[D]. 太原: 中北大学, 2007.
[6] 姚直象, 惠俊英, 蔡平, 等. 单矢量水听器方位估计的柱状图方法[J]. 应用声学, 2006, 25(3): 161-167.
[7] 徐明远, 刘增力. MATLAB仿真在信号处理中的应用[M]. 西安: 电子科技大学出版社, 2007: 313-316.
[8] 王拴中, 朱玉田. 改进小波阈值去噪法的对比性仿真实验与分析[J]. 噪声与振动控制. 2012, 32(1): 128-132.
[9] 孙延奎. 小波分析及其应用[M]. 北京: 机械工业出版社, 2005: 224-236.
[10] 李芬. 矢量水听器确定声源目标方位估计研究[D]. 哈尔滨: 哈尔滨工程大学, 2004.