以船舶机舱为研究对象,采用大涡模拟方法,以FDS软件为平台,计算了不同火灾功率、风机启动时间、风机流速和补风口面积条件下的火场温度变化过程。以FDS的数值模拟数据为样本建立了船舶机舱火灾温度的支持向量机计算模型,为提高模型预测的精确度,利用遗传算法对参数进行寻优。实验表明:应用本文模型预测结果与FDS计算结果基本一致,优于 SVM模型以及 BP 神经网络的预测结果,提出一种快速预测火场温度的工程计算方法。
The fire temperature change process under various conditions are calculated by large eddy simulation model based on FDS platform. The research takes ship engine room as the object, the conditions include the fire power , the activation time of exhaust system, the exhaust flow and the are of make-up air inlets. The support vector machine of fire temperature prediction model in ship engine room is built on the basis of FDS numerical simulation results sample. In order to improve the accuracy of the model predictions, the genetic algorithm is selected to optimize parameters . The experiments show that, the prediction results of the GA-SVM model are basically identical with the FDS calculation results , and are better than the prediction results of BP neural network and the SVM model, an engineering calculation approach for fast predicting the temperature of the fire is brought forth.
2018,(): 148-152 收稿日期:2016-08-01
DOI:10.3404/j.issn.1672-7649.2018.01.027
分类号:U665.1
作者简介:张茜(1990-),女,硕士研究生,研究方向为船舶自动化
参考文献:
[1] 贾佳, 陆守香. 船舶舱室火灾风险分析方法研究[J]. 安全与环境学报, 2014, 14(3): 132-137.
JIA Jia, LU Shou-xiang. Study of fire risk analysis method applied to ship compartment[J]. Journal of safety and environment, 2014, 14(3): 132-137.
[2] 苌占星. VR技术在船舶舱室火灾处理中的应用研究[D]. 大连: 大连海事大学, 2015.
[3] 周德闯. 基于虚拟现实平台的火灾场景计算和仿真研究[ D]. 合肥: 中国科学技术大学, 2010: 72-96.
[4] 徐文强, 刘芳, 董龙洋, 等. 基于FDS的地下停车场火灾数值模拟分析[J]. 安全与环境工程, 2012, 19(1): 73-76.
XU Wen-qiang, LIU Fang, DONG Long-yang, et al. Analysis on the fire of underground parking based on FDS numerical simulation[J]. Safety and Environmental Engineering, 2012, 19(1): 73-76.
[5] 胡靖. 船舶封闭舱室火灾温度分布特性实验研究[D]. 合肥: 中国科学技术大学, 2010: 8-10.
[6] 辛喆, 王顺喜, 云峰, 等. 基于火灾模拟软件(FDS)的草原火灾蔓延规律数值分析[J]. 农业工程学报, 2013, 29(11): 156-163.
XIN Zhe, WANG Shun-xi, YUN Feng, et al. Numerical analysis on spreading laws of grassland fire based on fire dynamics simulator (FDS)[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(11): 156-163.
[7] 顾亚祥, 丁世飞. 支持向量机研究进展[J]. 计算机科学, 2011, 38 (2): 14-17.
GU Ya-fei, DING Shi-fei. Advances of support vector machines(SVM)[J]. Computer Science, 2011, 38(2): 14-17.
[8] 陈伟根, 滕黎, 刘军, 等. 基于遗传优化支持向量机的变压器绕组热点温度预测模型[J]. 电工技术学报, 2014, 29(1): 44-51.
CHEN Wei-gen, TENG Li, LIU Jun, et al. Transformer winding hot-spot temperature prediction model of support vector machine optimized by genetic algorithm[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 44-51.
[9] 杨钟瑾. 粒子群和遗传算法优化支持向量机的破产预测[J]. 计算机工程与应用, 2013, 49(18): 265-270.
YANG Zhong-jin. Bankruptcy prediction based on support vector machine optimized by particle swarm optimization and genetic algorithm[J]. Computer Engineering and Applications, 2013, 49(18): 265-270.
[10] CHAUDHURI A, DE K. Fuzzy support vector machine for bankruptcy prediction[J]. Applied Soft Computing, 2011, 11(2): 2472-2486.
[11] WANG Chun-lin, ZHOU hao, LI Guo-neng. Combining support vector machine and genetic algorithm to predict ash fusion temperature[J]. Proceedings of the CSEE, 2010, 27(8): 11-15.