应用基于CFD的数值计算方法,研究了Zwart空化模型中的相变系数对不同头型圆柱空化问题的适用性。通过计算流线型和非流线型圆柱在不同空化数下的表面压力系数,并与实验值对比,得到不同头型圆柱空化计算时相变系数的设定规律。研究结果表明,对于流线头型的圆柱,流动分离作用很弱,应当增大蒸发系数和冷凝系数;对于非流线头型的圆柱,流动分离作用强烈,数值计算结果对相变系数变化的敏感性较低,只需保证蒸发系数和冷凝系数的数量级关系即可较准确模拟空化现象。
The applicability of the phase-change coefficients in Zwart cavitation model for different types of cylindrical cavitation problems are studied by numerical calculation method based on computational fluid method (CFD). Phase-change coefficients setting rules are got by comparing surface pressure coefficients calculated in streamlined and non-streamlined cylinders under different cavitation numbers with experimental data, when calculating different types of cylindrical cavitation problems. The results show that, for streamlined cylinders, evaporation coefficients and condensation coefficients should be increased due to flow separation effect is very weak. For non-streamlined cylinders, the sensitivity of numerical results for phase-change coefficients is relatively low due to flow separation effect is very strong. Only the magnitude relationship between the evaporation coefficient and condensation coefficient should be ensured, and then cavitation phenomena can be simulated accurately.
2018,(): 39-45 收稿日期:2017-03-03
DOI:10.3404/j.issn.1672-7649.2018.02.007
分类号:O351.2;O414.3
基金项目:中国科学院国防创新基金资助项目(CXJJ-14-Z67);机器人学国家重点实验室自主课题资助项目(2014-Z08)
作者简介:王超(1987-),男,博士研究生,主要从事空化/超空化应用技术研究
参考文献:
[1] 易文俊, 熊天红. 高速航行体的自然超空泡流阻力特性研究[J]. 舰船科学技术, 2009, 31(1): 38-42.
YI Wen-jun, XIONG Tian-hong. Research on drag characteristics of natural supercavitation profile for high speed bodies[J]. Ship Science and Technology, 2009, 31(1): 38-42.
[2] SINGHAL A K, ATHAVALE M M, LI Hui-ying, et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124(3): 617-624.
[3] ZWART P J, GERBER A G, BELAMRI T. A two-phase flow model for predicting cavitation dynamics[C]//5th International Conference on Multiphase Flow, Yokohama Japan: ICMF, 2004.
[4] KUNZ R F, BOGER D A, STINEBRING D R, et al. A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[J]. Computers & Fluids, 2000, 29(8): 849-875.
[5] MERKLE C L, FENG J, BUELOW P E O. Computational modeling of the dynamics of sheet cavitation[C]//Proceedings of Third International Symposium on Cavitation. Grenoble: [s. n.], 1998: 307-313.
[6] 王柏秋, 王聪, 黄海龙, 等. 空化模型中的相变系数影响研究[J]. 工程力学, 2012, 29(8): 378-384.
WANG Bai-qiu, WANG Cong, HUANG Hai-long, et al. Study of the influence of phase-chage coefficient in the cavitation model[J]. Engineering Mechanics, 2012, 29(8): 378-384.
[7] WANG Bai-qiu, WANG Cong, HUANG Hai-long, et al. Study of the phase-change coefficients of the cavitation model in cavitation flow fields generated from cone cavitator[J]. Journal of Harbin Institute of Technology, 2012, 19(4): 1-8.
[8] LIU Hou-lin, WANG Jian, WANG Yong, et al. Influence of the empirical coefficients of cavitation model on predicting cavitating flow in the centrifugal pump[J]. Int. J. Nav. Archit. Ocean Eng. 2014, 6: 119-131.
[9] 黄彪, 王国玉, 胡常莉, 等. 绕回转体初生空化流场特性的实验及数值研究[J]. 工程力学, 2012, 29(6): 320-325.
HUANG Biao, WANG Guo-yu, HU Chang-li, et al. Experimental study on fluctuating hydrodynamics around axisymmetric bodies[J]. Engineering Mechanics, 2012, 29(6): 320-325.
[10] DULAR M, BACHERT R, STOFFEL B, et al. Experimental evaluation of numerical simulation of cavitating flow around hydrofoil[J]. European Journal of Mechanics-B/Fluids, 2005, 24(4): 522-538.
[11] COUTIER-DELGOSHA O, FORTES-PATELLA R, REBOUD J L. Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation[J]. Journal of Fluids Engineering, 2003, 125(1): 38-45.
[12] KUBOTA A, KATO H, YAMAGUCHI H. A new modeling of cavitation flows: a numerical study of unsteady cavitation on a hydrofoil section[J]. Journal of Fluid Mechanics, 1992, 240(1): 59-96.
[13] 王复峰, 王国玉, 黄彪, 等. 通气空化多项流动特性的实验与数值研究[J]. 工程力学, 2016, 33(9): 220-226.
WANG Fu-feng, WANG Guo-yu, HUANG Biao, et al. Experimental and numerical study on characteristic of ventilated cavitation multiphase flow[J]. Engineering Mechanics, 2016, 33(9): 220-226.
[14] HUNTER R, JOHN S M. Cavitation and pressure distribution, head forms at zero angle of yaw[R]. State University of Iowa, Studies in Engineering, Bulletin 32.