采用基于两方程k-ω-SST模型的IDDES方法,对5类空腔流进行数值模拟,研究空腔流尾流模式的振荡特性,详细分析了流场中涡结构、腔口法向速度等信息,着重探讨了空腔跨度和深度对尾流模式振荡频率的影响。数值计算结果表明:IDDES方法可有效模拟尾流模式不可压缩空腔流,捕捉空腔流一个周期内涡的演化规律;不同跨度、深度空腔尾流模式流场结构及涡发展规律基本一致;空腔跨度几乎不影响振荡频率,而深度对振荡频率有显著影响,与可压缩空腔流Rossiter给出的半经验公式有明显区别,并揭示了这种现象产生的原因。
Numerical investigations are conducted on cavity flow using IDDES (Improved-Delayed-Detached-Eddy-Simulation) based on k-ω-SST turbulence model. The oscillation characteristics of the cavity flow in wake mode are studied. The vortex structure and mean velocity of cavity mouth are analyzed in detail. The influence of cavity length and depth on oscillation frequency is discussed, and several important conclusions are drawn. Incompressible cavity flow in wake mode can accurately be simulated by IDDES, and the vortex structure of cavity flow can be captured. The flow field development of different cavity in wake mode is basically consistent. While the cavity length has little effect on the oscillation frequency, the cavity depth has significant influence on oscillation frequency. This is obvious different from the semi-empirical formula given by Rossiter. The semi-empirical formula cannot be extended to the wake mode of cavity flow, and the reason for this phenomenon are revealed.
2018,(): 52-57 收稿日期:2017-07-06
DOI:10.3404/j.issn.1672-7649.2018.02.009
分类号:O351.2;O414.3
作者简介:郭裕(1993-),男,硕士研究生,研究方向为流动不稳定性、核动力装置热工水力
参考文献:
[1] 尹立中, 王本利, 邹经湘. 航天器液体晃动与液固耦合动力学研究概述[J]. 哈尔滨工业大学学报, 1999, 31(2): 118-122.
[2] SUPONITSKY V, AVITAL E, GASTER M. On three-dimensionality and control of incompressible cavity flow[J]. Physics of Fluids, 2005, 17: 104-130.
[3] DE ROECK W, RUBIO G, BAELMANS R, et al. Toward accurate hybrid prediction techniques for cavity flow noise applications[J]. Int J Numer Meth Fluids, 2009, 61: 1363-1387.
[4] HAIGERMOSER C, VESELY L, NOVARA M, et al. A time-resoved particle image velocimetry investigation of a cavity flow with a thick incoming turbulent boundary layer[J]. Submitted to Physics of Fluids, 2008.
[5] GRACE SM, DEWAR WG, WROBLEWSKI DE. Experimental investigation of the flow characteristics within a shallow wall cavity for both laminar and turbulent upstream boundary layers[J]. Experiments in Fluids, 2004, (36): 791-804.
[6] AHUJA KK, MENDOZA J. Effects of cavity dimensions, boundary layer, and temperature on cavity noise with emphasis on benchmark data to validate computational aeroacoustic codes[J]. NASA contractor report: Final report contract NAS1-19061, task 13.
[7] ROSSITER J E. Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[J]. Royal Aircraft Establishment Technical Report. 1964, 3438: 8-12.
[8] GHARIB M, ROSHKO. The effect of flow oscillations on cavity drag[J]. Fluid Mech, 1987, 177: 501-530.
[9] RIZZETTA D P. Numerical simulation of supersonic flow over a three-dimensional Cavity [J]. AIAA Journal 1988, 26(7): 799-807.
[10] SHUR M L, SPALART P R, STRELETS M, TRAVIN A. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities [J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649.
[11] 程艳伟. 二维非定常可压缩湍流的大涡数值模拟[D]. 长沙: 国防科学技术大学, 2002.