为探索潜艇处于复杂水域时水下标量电位的分布,将海床倾斜水域作为切入点,在利用镜像法推导出海床倾斜水域潜艇水下标量电位的分布表达式后,对水下电位的分布特征进行仿真分析,并与传统平行分层环境下电位分布进行对比。研究表明:海床倾斜水域潜艇水下电位分布特征明显,量值可观,可用于潜艇的探测与定位;小角度范围内,改变海床倾斜角度和海水电导率,所研究水域电位分布特征的区域性不变,其量值随海床倾斜角度增大呈线性增加,随海水电导率增大呈非线性衰减;相比于平行海床水域,海床倾斜时不存在电位为0的场点,且沿偶极矩方向的对称性丧失。研究结果为进一步研究更为复杂水域潜艇腐蚀相关电场的场分布问题奠定了基础。
In order to explore the distribution of underwater electric scalar potential produced by a submarine in complex waters, inclined seabed waters was taken as a breakthrough point, after the expressions for UEP in there was derived by using mirror image method, the numerical simulation method had been used to analyze the characteristics, and compare to the parallel seabed waters. The results show that:the UEP is suitable for submarine detection and position fixing because of its measureable magnitude and obvious distribution characteristic; in a small angel range, the inclined angle of seabed and the electrical conductivity of seawater will produce an effect on the value of UEP but not the regional characteristics, the value increases linearly with the increase of the inclined angle, degenerates quadratically with the increase of electrical conductivity; there is no zero potential point and symmetry along the direction of the dipole moment when the seabed is tilted. The results lay a foundation for further researching on the distribution of corrosion related electric field produced by a submarine in more complex waters.
2018,40(3): 49-54 收稿日期:2016-11-11
DOI:10.3404/j.issn.1672-7649.2018.03.009
分类号:TJ111
基金项目:国家自然科学基金资助项目(51109215);国防预言基金资助项目(51444070105JB11)
作者简介:冯亚敏(1991-),男,硕士研究生,研究方向为舰船水下电磁目标特性
参考文献:
[1] WU Jian-hua, XING Shao-hua, LIANG Cheng-hao, et al. The influence of electrode position and output current on the corrosion related electro-magnetic field of ship[J]. Advances in Engineering Software, 2011, 42(10):902-909.
[2] FALLAH M A, ABIRI H. Electromagnetic fields induced by the motion of di-hull bodies in a conducting fluid[J]. IEEE Transactions on Magnetics, 2013, 49(10):5257-5263.
[3] BIRSAN M. Measurement of the extremely low frequency (ELF) magnetic field emission from a ship[J]. Measurement Science and Technology, 2011, 22(8):085709.
[4] HE F, WANG X, ZHOU G. Feature extraction of shaft-rate electric field in the far field[C]//Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE), 2013 IEEE 5th International Symposium on. IEEE, 2013:189-192.
[5] LIN G H, ZHANG Y R, LI K, et al. Electromagnetic field of a horizontal electric dipole buried in a medium covering one-dimensionally anisotropic medium[J]. AEU-International Journal of Electronics and Communications, 2013, 67(8):708-716.
[6] LUO Y, LI Q M, HE H Y. Study on electric field detection of ship based on character of gradient[C]//Consumer Electronics, Communications and Networks (CECNet), 2011 International Conference on. IEEE, 2011:3576-3579.
[7] 陈聪, 蒋治国, 姚陆锋, 等. 浅海中潜艇腐蚀相关静态电磁信号特征[J]. 海军工程大学学报, 2014, 26(3):1-6.CHEN Cong, JIANG Zhi-guo, YAO Lu-feng, et al. Characteristic analysis of corrosion-related static electromagnetic field produced by a submarine in shallow sea[J]. Journal of Naval University of Engineering, 2014, 26(3):1-6.
[8] 陈聪, 李定国, 龚沈光. 浅海中静态电偶极子电场分布的镜像法研究[J]. 武汉理工大学学报, 2010, 34(4):716-720.CHEN Cong, LI Ding-guo, GONG Shen-guang. Research on the electric field produced by static electric dipole located in shallow sea with mirror image theory[J]. Journal of Wuhan University of Technology, 2010, 34(4):716-720.
[9] 卢新城, 王婷, 陈新刚, 等. 海船轴频电场建模方法研究[J]. 武汉理工大学学报, 2012, 36(1):168-170.LU Xin-cheng, WANG Ting, CHEN Xin-gang, et al. Research on the modeling method of a sea gong vessel's shaft-rate electric fields[J]. Journal of Wuhan University of Technology, 2012, 36(1):168-170.
[10] 杨国义. 舰船水下电磁场国外研究现状[J]. 舰船科学技术, 2011, 33(12):140-142.YANG Guo-yi, Situation on underwater electromagnetic field researches of ships abroad[J]. Ship Science and Technology, 2011, 33(12):140-142.
[11] RODRIGO F J, MARÍA-DOLORES B, SÁNCHEZ A. Underwater threats detection based on electric field influences[J]. Undersea Defence Technology Conference Europe, Hamburg(Germany), 2010.
[12] 冯士筰, 李凤歧, 李少菁. 海洋科学导论[M]. 北京:高等教育出版社, 1999.
[13] 陈聪, 李定国, 蒋治国, 等. 二次等效法求三层媒质中静态电偶极子的场分布[J]. 物理学报, 2012, 61(24):244101.CHEN Cong, LI Ding-guo, JIANG Zhi-guo, et al. Electric field of a static electric dipole in three layer medium model using secondary equivalent method[J]. Acta Physica Sinica, 2012, 61(24):244101.
[14] ADEY R, BAYNHAM J M W. Predicting corrosion related signatures[J]. Simulation of Electro-chemical Processes Ⅱ. WIT Transactions on Engineering Sciences, 2007, 54:213-223.
[15] KEDDIE A J, POCOCK M D, DEGIORGI V G. Fast solution techniques for corrosion and signatures modeling[J]. Simulation of Electro-chemical Processes Ⅱ. WIT Transactions on Engineering Sciences, 2007, 54:225-234.
[16] ALLAN P J. Investigations of the magnetic fields from ships due corrosion and its countermeasures[D]. Glasgow:University of Glasgow, 2004:101-116.
[17] 谭浩, 贾亦卓, 龚沈光. 基于径向基神经网络回归预测的船舶轴频电场实时检测方法[J]. 应用基础与工程科学学报, 2013, 21(1):167-173.
[18] LIN G H, ZHANG Y R, LI K, et al. Application of electromagnetic wave in the 1-D medium from a horizontal electric dipole in an isotropic region[J]. Journal of Electromagnetic Waves and Applications, 2015, 29(1):50-59.
[19] KING R W P. The electromagnetic field of a horizontal electric dipole in the presence of a three layered region:Supplement[J]. J. Appl. Phys., 1993, 74(8):4845-4848.
[20] 陈聪, 李定国, 蒋治国, 等. 等效源法求分层导电媒质中水平直流电偶极子的磁场[J]. 应用基础与工程科学学报, 2015, 23(5):1001-1009.
[21] 陈聪. 舰船电磁场的模型研究和深度换算[D]. 武汉:海军工程大学, 2008.CHEN Cong. Research on the modeling and the extrapolation of electromagnetic field of ships[D]. Wuhan:Navy University of engineering, 2008.