近年来,随着北极海冰面积的减少,为商船在北极的通航提供了条件。与传统通道不同,北极航道存在大量的冰区,在通航时,冰粒可能与海水一起进入极地船的海水冷却系统。在本研究中,用欧拉-欧拉多相模型和相间传热传质模型研究壳管式换热器直管和U管中海水冰晶的固液两相流和相变特性。得出在直管中冰晶颗粒主要集中在主流区,流动模式为悬浮,并且随着入口速度的增加,冰晶颗粒的融化特性加强。在U管中,由于离心力的作用,管角内壁附近的海水和冰晶颗粒会流向外壁,并随着速度的增加,效果更加明显。在进口速度相同的情况下,U管中有更多的冰粒融化,并且融化的冰晶颗粒量随入口速度的增加而增加。
In recent years, with the shrinkage of the arctic sea ice area, arctic channel can be used for merchant ships. Different from the traditional channel, there are ice areas in arctic channel. Moreover, ice particles may enter into seawater cooling system of polar marines with the seawater. In the present study, Eulerian-Eulerian multiphase model coupled with the interphase heat and mass transfer model were used to investigate the solid-liquid two-phase flow and phase change characteristics of seawater slurry in the seawater pipe of straight pipe and U pipe heat exchanger of polar ships. It is concluded that the ice slurry in the straight tube are mainly concentrated in the main flow area, and the flow pattern was suspended, and the melting characteristics of the ice crystals are enhanced with the increase of the inlet velocity. In the U-pipe,the seawater and particles near the inner wall at the corner of pipe flowed to the outer wall because of the centrifugal force,and with the increase in speed, the effect is more obvious. In the case of the same inlet speed, more ice slurry are melted in the U-pipe, and the amount of frozen ice slurry increases with increasing inlet velocity.
2018,40(3): 102-107 收稿日期:2017-04-14
DOI:10.3404/j.issn.1672-7649.2018.03.018
分类号:U664
基金项目:国家自然科学基金资助项目(51479152)
作者简介:徐立(1975-),男,副教授,研究方向为船舶动力装置性能分析及优化
参考文献:
[1] 沈春, 施伟来. 基于Nimbus-7和DMSP卫星资料的北极海冰变化特征分析[J]. 海洋预报, 2015, 04:31-43.
[2] GUPTA A, ROY S. Eulerian-eulerian simulation of bubbly flow in a rectangular bubble column:experiment validation with radioactive particle tracking[J]. Chem. Eng. J, 2013(225):818-836.
[3] ZHANG P, JIANG Y Y. Forced convective heat transfer of slush nitrogen in a horizontal pipe[J]. Int. J. Heat Mass Transfer, 2014(71):158-171.
[4] 钱颂文. 换热器设计手册[M]. 北京:化学工业出版社, 2002:32-34.
[5] AYEL V, LOTTIN O, PEERHOSSAINI H. Rheology flow behavior and heat transfer of ice slurries:a view of the state of the art[J]. International Journal of Refrigeration, 2003, 26:95-107.
[6] GUNN D J1. Transfer of heat or mass to particles in fixed and fluidized beds[J]. Int. J. Heat Mass Transfer, 1978(21):467-476.
[7] BURNS A D B, FRANK TH, HAMILL I, et al. The favre averaged drag model for turbulent dispersion in eulerian multi-phase flows[C]//Fifth International Conference on Multiphase Flow, ICMF-2004, Yokohama, Japan. 2004.
[8] EKAMBARA K, SANDERS R S, NANDAKUMAR K, et al. Hydrodynamic simulation of horizontal slurry pipeline flow using ANSYS-CFX[J]. Ind. Eng. Chem. Res, 2009(48):8159-8171.
[9] GIDASPOW D, BEZBURUAH R, DING J. Hydrodynamics of circulating fluidized beds, kinetic theory approach[C]//In Fluidization VⅡ, Proceedings of the 7th Engineering Foundation Conference on Fluidization. Australia, Brisbane, 1992:75-82.
[10] 朱传芳. 海水制冰机制冰传热过程特性研究[D]. 广州:华南理工大学, 2010:21-24.
[11] MOSTAFA H S, JOHN H L, SYED M Z. On thermal performance of seawater cooling towers[J]. Journal of Engineering for Gas Turbines and Power, 2011.133(4):1-7.
[12] 王冶. 船用换热器流动与传热的三维流场数值模拟研究[D]. 上海:上海交通大学, 2013:23-14.