为了提高阵元的利用率和水下目标的测向精度,提出了一种特殊的非均匀水声阵列稀疏重构方法。利用2个均匀线性子阵列组成一个非均匀线性阵列作为信号的接收阵列,经过角度划分的非均匀线阵阵列流型阵作为观测阵,采用观测矩阵对信号进行投影测量得到观测值,从观测值中重构原信号进而得到方位信息。在相同分辨条件下,非均匀水声阵列技术可利用更少的阵元来识别更多的水下目标,因而极大地降低传统水声阵列的复杂度。在低先验知识、低信噪比条件下,提高了水声阵列的测向精度。
For improving the utilization ratio of the array elements and the precision of underwater targets, a special sparse reconstruction approach for NULA are proposed. This NULA which composed of two linear uniform sub-arrays is used as the receiving array of signal. Flow pattern array of NULA which have divided angle is the observation matrix. Using the observation matrix for projection measurement of the signal to obtain observed value. The original signal is reconstructed from the observed value then getting the orientation information. The technology of Non-uniform acoustic array can use fewer elements to identify more underwater targets with the same resolution condition. So it greatly reducing the complexity of traditional underwater acoustic array. It also improve the direction-finding accuracy of underwater acoustic array in low SNR and low prior knowledge conditions.
2018,40(3): 132-136 收稿日期:2016-10-12
DOI:10.3404/j.issn.1672-7649.2018.03.024
分类号:TP391.9
基金项目:国家自然科学基金资助项目(11574120);江苏省自然科学基金资助项目(BK20161359);江苏高校高技术船舶协同创新中心/江苏科技大学海洋装备研究院资助项目(HZ2016010);水声对抗技术重点实验室基金资助项目
作者简介:严雨霞(1992-),女,硕士研究生,研究方向为水声信号与信息处理
参考文献:
[1] 王永良, 陈辉, 彭应宁, 等. 空间谱估计理论与算法[M]. 北京:清华大学出版社, 2004:82-138.WANG Yong-liang, CHEN Hui, PENG Ying-ning, et al. Spatial spectrum estimation theory and algorithms[M]. Beijing:Academic Building, Tsinghua University Press, 2004:82-138.
[2] 张峰. 水下目标DOA估计方法研究[D]. 哈尔滨:哈尔滨工程大学. 2013. 3:11-12.ZHANG Feng. Research on DOA estimation method of underwater target[D]. Harbin:Harbin Engineering University. 2013. 3:11-12.
[3] XIANG Yang, HUANG Jiao-guo, SHI Wen-tao, et al. High resolution direction-of-arrival estimation based on beam -spectra envelope[C]//Signal Processing, Communication and Computing(ICSPCC), 2013 IEEE International Conference on, Kunming, 2013:1-2.
[4] YAN Feng-gang, JIN Ming, QIAO Xiao-lin. Low-complexity DOA estimation based on compressed MUSIC and its performance analysis[J]. IEEE Transactions on Signal Processing, 2013. 4, 61(8):1915-1916.
[5] PASCAL V, XAVIER M, PHILIPPE L. Performance analysis of an improved MUSIC DoA estimator[J]. IEEE Transactions on Signal Processing, 2015. 8, 63(23):6407-6408.
[6] OLLIER V, EL KORSO M. N, BOYER R, et al. Joint ML calibration and DOA estimation with separated arrays[C]//2016 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), Shanghai, 2016:2996-2998.
[7] 田达, 张洪, 陈天麒. 一种新的时频极大似然DOA估计方法[J]. 电子与信息学报, 2005. 2, 27(2):2-3.TIAN Da, ZHANG Hong, CHEN Tian-lin. DOA estimation based on time-frequency maximum likelihood[J]. Journal of Electronics & Information Technology, 2005. 2, 27(2):2-3.
[8] PIYA P, VAIDYANATHAN P P. Non uniform linear arrays for improved identifiability in cumulant based DOA estimation[C]//2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASTLOMAR), 2011:609-610.
[9] 陈柱学, 吴建新. 非均匀线阵的快速求根MUSIC方法[J]. 雷达科学与技术, 2014. 4, 12(2):167-169.CHEN Zhu-xue, WU Jian-xin. Fast root MUSIC for non-uniform linear array[J]. Redar Science and Technology, 2014. 4, 12(2):167-169.
[10] 王彪, 李超, 戴跃伟. 基于空域压缩采样的水声目标DOA估计方法[J]. 兵工学报, 2013. 11, 34(11):1480-1481.WANG Biao, LI Chao, DAI Yue-wei. DOA estimation method based on spatial compressive sampling for underwater acoustic target[J]. Acta Armamentarii, 2013. 11, 34(11):1480-1481.
[11] GUO Xin, SUN Hong-bo. Cpmpressive sensing for target DOA estimation in radar[C]//2014 International Radar conference, Lille, 2014:1-2.
[12] MASATO G, YOSHIKI T, ATSUO O. Fast implementation of sparse reconstruction for CS-based DoA estimation[C]//Radar Conference(EuRAD), Paris, 2015:165-166.
[13] MALIOUTOV D, CETIN M, WILLSKY A. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8):3010-3022.
[14] KULAIB A R, SHUBAIR R M, QUTAYRI M Al, et al. Accurate and robust DOA estimation using uniform circular displaced antenna array[C]//2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2015:1552.
[15] Gu Jian-feng, ZHU Wei-ping, SWAMY M N S. Fast and accurate 2-D DOA estimation via sparse L-shaped array[C]//2014 IEEE International Symposium on Circuits and Systems(ISCAS), 2014, 10:1292-1293.
[16] PIYA P, VAIDYANATHAN P P. Non uniform linear arrays for improved identifiability in cumulant based DOA Estimation[C]//2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR). 2011, 10(1):608-609.
[17] 杨桂芹, 房琪, 胡滢. 基于非均匀阵列天线的MUSIC算法性能分析[J]. 兰州交通大学学报, 2012, 31(6):88-89.YANG Gui-qin, FANG Qi, HU Ying. Performance analysis of MUSIC algorithm based on non-uniform array antenna[J]. Journal of Lanzhou Jiaotong University, 2012, 31(6):88-89.
[18] ZHANG Yi-min, QIN Si, MONEESS G A. DOA estimation exploiting coprime arrays with sparse sensor spacing[C]//IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP), Florence, 2014:2267-2268.
[19] HU Nan, YE Zhou-fu, XU Xu, et al. DOA estimation for sparse array via sparse signal reconstruction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2):761-773.
[20] QIN Si, ZHANG Yi-min, MOENESS G A. Generalized coprime array configurations for direction-of-arrival esitimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6):1377-1378.