在实际管路系统低噪声安装施工中,由于受船舶安装空间因素的限制,振源附近通常没有位置安装挠性接管,此时往往会改变挠性接管的安装位置。由于挠性接管安装位置改变,管路系统振动特性也随之改变。针对以上问题,建立安装有挠性接管管路系统的有限元模型,改变挠性接管安装位置,计算指定点在单点激励下的振动特性,最后进行实验验证。结果表明:尽管理论上挠性接管的布置应尽量靠近振源,但在实际安装过程中,若安装空间不允许,可根据空间位置适当调整挠性接管与振源的相对位置,实验证明合理地调整其安装位置对管路系统振动噪声控制影响较小。这一研究将为管路系统挠性接管的低噪声安装提供实践参考和理论依据。
In the actual low noise pipeline system installation construction, due to ship installation space constraint, there always have no space near the vibration source to install the flexible pipe, in that time the installation location of flexible pipe usually will be changed. Because of the change of the flexible pipe installation position, the pipeline system vibration characteristic is also changed. In view of the problems above, the finite element model of the flexible pipe is set up, the installation position of the flexible pipe is changed, and the vibration characteristic of the specified point in the unit excitation is calculated. The results show that although the theory of flexible pipe arrangement should be as close to the source, but in the actual installation process, if the installation space does not allow, the relative position between the flexible pipe and vibration source can be adjusted according to the space, experiments show that reasonable adjustment of the installation position between flexible pipe and the vibration source have little effect on pipeline system vibration and noise control. This research will provide practical reference and theoretical basis for the low noise installation of pipeline system.
2018,40(5): 41-45 收稿日期:2017-01-14
DOI:10.3404/j.issn.1672-7649.2018.05.007
分类号:TB533
基金项目:海军工程大学科研资助项目(425517K143);国家自然科学基金青年基金资助项目(51509253)
作者简介:戴青山(1992-),男,硕士研究生,主要从事振动与噪声控制方面的研究
参考文献:
[1] 王艳林, 王自东, 宋卓斐, 等. 潜艇管路系统振动噪声控制技术的现状与发展[J]. 舰船科学技术, 2008, 30(6):34-38.
[2] Naval Engineering Standard. Ministry of Defence. U. K. Requirements for Flexible Rubber Pipe Assemblies and Bellows for Use in Systems from Vacuum to 10 bar[S]. 2000.
[3] MUNJA M L, THAWAN P T. I prediction of the vibro-acoustic transmission loss of planarhose-pipe systems[J]. Journal Acoustical Society of America. 1997, 101.
[4] SHUAI Chang-geng, HE Lin, LV Zhi-qiang.The development of studying flexible pipe bend reinforced by kevlar fibers[J]. Journal of Marine Science and Application. 2003, 2(2):61-66.
[5] 朱石坚, 何琳. 船舶减振降噪技术与工程设计[M]. 北京:科学出版社, 2002.
[6] APIRP B. Recommended practice for flexible pipes[M]. Washington:American Petroleum Institute. 1998.
[7] BROWN P A. A theoretical approach to prediction of service life of unbonded flexible pipes under dynamic loading conditions[J]. Marine Structures 1992.19(5):399-429.
[8] 熊永华, 杜发荣, 钟玉平. 金属波纹管的动态特性分析与振动试验研究[J]. 中国机械工程2008, 19(10):1177-1180.
[9] 柴小文. 舰用挠性接管技术现状和进展[J]. 振动与噪声控制, 2007, 10(5):13-16.
[10] 赵应龙, 何琳. 橡胶挠性接管特性研究[J]. 海军工程大学学报, 2001, 13(1):61-64.
[11] 王小锋, 周勇, 刘春林, 等. 新型压缩式橡胶挠性接管结构设计与试验[J]. 振动与噪声控制, 2013, 33(6):207-211.
[12] 蔡亦钢. 流体传输管道动力学[M]. 杭州:浙江大学出版社, 1990.
[13] 李德葆, 陆秋海. 工程振动试验分析[M]. 北京:清华大学出版社, 2004.
[14] 王勖成. 有限单元法[M]. 北京:清华大学出版社, 2003.