针对船舶平面分段建造过程中广泛存在的不确定性问题,考虑在平面分段流水线调度中引入更贴近实际的模糊调度。以模糊数表示加工时间和交货期,以最小化最大完工时间、最大化平均满意度为调度目标,建立平面分段流水线多目标模糊调度问题的数学模型,设计了求解该问题的改进多目标粒子群算法。提出一种按反Logistic曲线规律动态变化的惯性权重,从而在一定程度上平衡算法的全局和局部搜索能力;嵌入由3种邻域结构随机排列构造的变邻域搜索算子以增强算法的局部改良性搜索能力;采用一种基于拥挤距离的非支配解动态维护策略以提高解的分布性。结合实例数据,通过对算法进行比较,证实了各项改进措施的有效性,以及所设计算法求解平面分段流水线多目标模糊调度问题的优越性。
Considering that uncertainty is common in ship construction, the concept of fuzzy scheduling is introduced in the scheduling problem of panel block construction. It is formulated as a multi-objective fuzzy blocking flow shop scheduling problem with a fuzzy processing time and fuzzy due date, and not only minimizes the fuzzy makespan but also maximizes the average agreement index. An improved multi-objective particle swarm optimization is developed to solve the scheduling problem. Dynamic inertia weight changed in an inverse Logistic curve is employed to balance the global and local search ability to some extent. A variable neighborhood search operator with three randomly ranked neighborhood structures is embedded to enhance the evolutionary search ability. Furthermore, a dynamic crowding distance based maintenance strategy for non-dominated solutions is adopted to improve the distribution of the ones. Computational comparisons demonstrate the feasibility and effectiveness of the proposed algorithm.
2018,40(5): 46-51 收稿日期:2017-06-10
DOI:10.3404/j.issn.1672-7649.2018.05.008
分类号:U673.2
基金项目:国家重点基础研究发展计划资助项目(2013CB036103)
作者简介:杨志(1990-),男,博士研究生,研究方向为船舶智能制造、船舶建造智能调度
参考文献:
[1] REZA HEJAZI S, SAGHAFIAN S. Flowshop-scheduling problems with makespan criterion:a review[J]. International Journal of Production Research, 2005, 43(14):2895-2929.
[2] RUIZ R, VÁZQUEZ-RODRÍGUEZ J A. The hybrid flow shop scheduling problem[J]. European Journal of Operational Research, 2010, 205(1):1-18.
[3] YENISEY M M, YAGMAHAN B. Multi-objective permutation flow shop scheduling problem:Literature review, classification and current trends[J]. Omega, 2014, 45:119-135.
[4] KAHRAMAN C, ENGIN O, YILMAZ M K. A new artificial immune system algorithm for multiobjective fuzzy flow shop[J]. International Journal of Computational Intelligence Systems, 2009, 2(3):236-247.
[5] ENGIN O, KAHRAMAN C, YILMAZ M K. A scatter search method for multiobjective fuzzy permutation flow shop scheduling problem:a real world application[M]. Computational Intelligence in Flow Shop and Job Shop Scheduling. Springer Berlin Heidelberg, 2009:169-189.
[6] HA T R, MOON C U, JOO C M, et al. A hybrid genetic algorithm for scheduling of the panel block assembly shop in shipbuilding[J]. Management Science, 2000, 17(1):135-143.
[7] 张志英, 李殿勤. 船舶平面分段的非完全混合流水线调度[J]. 计算机集成制造系统, 2012, 18(11):2435-2445.
[8] ABDULLAH S, ABDOLRAZZAGH-NEZHAD M. Fuzzy job-shop scheduling problems:A review[J]. Information Sciences, 2014, 278:380-407.
[9] LEI D. Fuzzy job shop scheduling problem with availability constraints[J]. Computers & Industrial Engineering, 2010, 58(4):610-617.
[10] SAKAWA M, KUBOTA R. Fuzzy programming for multiobjective job shop scheduling with fuzzy processing time and fuzzy duedate through genetic algorithms[J]. European Journal of operational research, 2000, 120(2):393-407.
[11] LIU B, WANG L, JIN Y H. An effective PSO-based memetic algorithm for flow shop scheduling[J]. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on, 2007, 37(1):18-27.
[12] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J]. IEEE transactions on evolutionary computation, 2002, 6(2):182-197.
[13] CLERC M, KENNEDY J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE transactions on Evolutionary Computation, 2002, 6(1):58-73.
[14] ZITZLER E, THIELE L. Multiobjective evolutionary algorithms:a comparative case study and the strength Pareto approach[J]. IEEE transactions on Evolutionary Computation, 1999, 3(4):257-271.
[15] VAN VELDHUIZEN D A, LAMONT G B. Multiobjective evolutionary algorithm research:A history and analysis[R]. Technical Report TR-98-03, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio, 1998.