针对直驱式电液伺服系统的非线性不确定负载因数学模型无法准确描述而难以补偿问题,提出一种多滑模神经网络自适应控制策略。该控制策略结合了RBF神经网络对复杂非线性系统的强大映射能力以及响应速度快和滑模变结构控制的强抗干扰性2种控制算法优点,并利用Backstepping方法设计控制器。通过将传统滑模变结构控制中的非连续切换函数优化成连续可倒的切换函数,有效避免了传统滑模变结构控制的抖振现象。运用Lyapunov稳定性定理,理论证明了控制算法的稳定性,并通过仿真分析,验证了理论分析的正确性和控制策略的有效性。
A multiple sliding mode neural network adaptive control scheme, which combines the strong ability to map the complicated nonlinear system and fast responsibility of RBF neural network with anti-jamming of the sliding mode variable structure control, is proposed for the uncertain nonlinear load of direct drive electro-hydraulic servo system. Using the Backstepping method and substituting the discontinuous switching function of traditional sliding mode variable structure control for the continuous derivable function, a controller is designed, which avoids the chattering of the traditional sliding mode variable structure control effectively. The stability of the control algorithm is proved by employing the Lyapunov stability theorem. Simulation results demonstrate the correctness and effectivenness of the control strategy.
2018,40(5): 79-84 收稿日期:2017-01-03
DOI:10.3404/j.issn.1672-7649.2018.05.014
分类号:TP273
作者简介:徐荣武(1989-),男,博士研究生,主要研究方向为振动与噪声控制
参考文献:
[1] 王晓成. 直驱式电液伺服装置的改进及控制系统设计[D]. 哈尔滨:哈尔滨工业大学, 2010.
[2] ITO M, HIROSE N, SHIMIZU E. Main engine revolution control for ship with direct drive volume control system[C]//ISME. Tokyo, 2000.
[3] ITO, SATO H, MAEDA Y. Direct drive volume control of hydraulic system and its application to the steering system of ship[C]//FLUCOME. Tokyo, 1997:445-450.
[4] MIN G, SUNG H, JONG S, et al. Modeling and control and electro hydrostatic actuator systems[C]//International Joint Conference, Japan, 2009:3003-3008.
[5] 姜继海, 涂婉丽, 曹健. 火箭舵机用直驱式容积控制电液伺服系统的研究[J]. 流体传动与控制, 2005, (1):13-15.
[6] 陈娟, 乔彦峰. 伺服系统低速摩擦力矩特性及补偿研究概况[J]. 光机电信息, 2002, (11):30-34.
[7] 王旭永, 刘庆和. 电液马达位置伺服系统低速特性的机理研究[J]. 哈尔滨工业大学学报, 1993, 25(2):60-68.
[8] ZIAEI K, SEPEH RI N. Design of a nonlinear adaptive controller for an electrohydraulic actuator[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 2003, 123(9):449-456.
[9] MORCL G, IAGNEMMA K, DUBOWSKY S. The precise control of manipulators with high joint-friction using base force torque sensing[J]. Automatic, 2000, 36:931-941.
[10] 陈刚, 柴毅, 丁宝苍, 等. 电液位置伺服系统的多滑模神经网络控制[J]. 控制与决策, 2009, 24(2):221-225.
[11] 刘金琨. 滑模变结构控制Matlab仿真[M]. 北京:清华大学出版社, 2005.
[12] 晁红敏, 胡跃明. 动态滑模控制及其在移动机器人输出跟踪中的应用[J]. 控制与决策, 2001, 16(5):565-568.
[13] HEDRICK J K, YIP P P. Multiple sliding surface control:theory and application[J]. Journal of Dynamic Systems, Measurement, and Control, 2000, 122(4):586-593.
[14] DA F P. Decentralized sliding mode adaptive controller design based on fuzzy neural networks for interconnected uncertain nonlinear systems[J]. IEEE Trans on Neural Networks, 2000, 11(6):1471-1480.
[15] 管成, 朱善安. 基于Backstepping的电液伺服系统多级自适应滑模控制[J]. 仪器仪表学报, 2005, 26(6):569-573.
[16] KACHROO P, TOMIZUKA M. Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems[J]. IEEE Trans on Automatic Control, 1996, 41(7):1063-1068.
[17] EDWARDS C. A practical method for the design of sliding mode controllers using linear matrix inequalities[J]. Automatica, 2004, 40(10):1761-1769.
[18] SLOTINE J J, SASTRY S S. Tracking control of nonlinear systems using sliding surfaces with application to robot manipulator[J]. Int J Control, 1983, 38(2):465-492.
[19] 焦宗夏, 华清. 电液负载模拟器的R B F神经网络控制[J]. 机械工程学报, 2003, 39(1):10-14.
[20] 高宁, 张建中. MATLAB在RBF神经网络模型中的应用[J]. 农业网络信息, 2:110-116.
[21] KNOHL T, UNBEHAUEN H. Adaptive position control of eletrohydraulic servo systems using ANN[J]. Mechatronics, 2000, 10(1):127-143.
[22] 顾凯, 李长春, 刘晓东. 电液伺服系统摩擦力分析及补偿研究[J]. 液压与气动, 2010, 5:43-45.