锚泊舰船作为近场平台时,所搭载的声压阵受其影响较大,无法正常工作。为研究其原因,采用矢量水听器阵探明近场锚泊舰船的噪声形成机制。基于简正波的矢量场理论,采用多个点声源声能流的相互作用对近场舰船噪声进行建模,得到了不同接收点处声能流的水平方向性。仿真结果与海上试验结果均表明,同一接收点处声能流在水平面上的方向均随频率变化,不同接收点处声能流随频率变化情况不同。说明舰船锚泊时的噪声主要由海浪拍打船舷产生,所建立的噪声模型的仿真与海上试验结果趋势一致。2个接收点水平相距2.25 m时,所反映的近场舰船水平方向性不同,这是近场舰船干扰下使用声压阵波束形成方法对远场目标进行DOA估计时的性能大幅降低的主要原因。
When the near-field platform is a mooring ship, the noise is emitted mostly from the smack of waves against the side of the ship. The model of the noise of near-filed platform in shallow sea and in a coastal area is established by layered media mode theory in the particle velocity field. The horizontal azimuth of acoustic energy flow of noise of near-filed platform with vector hydrophone array is presented, which is changed with frequency and is similar to the investigations by vector sensor array at sea. Investigations of two array elements with the distance of 2.25 m demonstrate that the horizontal azimuth varies with the location of array elements, which is the reason that DOA (destination of arrival) estimation of sonar array by beam forming method is affected.
2018,40(5): 105-109 收稿日期:2017-05-11
DOI:10.3404/j.issn.1672-7649.2018.05.019
分类号:TN566
作者简介:侯文姝(1985-),女,博士研究生,研究方向为海洋环境效应
参考文献:
[1] SILVIA M T, RICHARDS R T. A theoretical and experimental investigation of low-frequency acoustic vecter sensors[C]//In Proc. of the OCEANS'02 Conf. Mts/IEEE, 2002(3):1886-1897.
[2] FELISBERTO P, SANTOS P, JESUS S M. Tracking source azimuth using a single vector sensor[C]//2010 Fourth International Conference on Sensor Technologies and Applications, 2010:416-421.
[3] BEREKETLI A, GULDOGAN M B, TANER K, et al. Experimental results for direction of arrival estimation with a single acoustic vector sensor in shallow water[J]. Journal of sensors, 2015:1-10.
[4] WU Y I, WONG K T. Acoustic near-field source-localization by two passive anchor-nodes[J]. IEEE Trans. on aerospace and electronic systems, 2012, 48(1):159-169.
[5] 梁国龙, 庞福滨, 庞秀珍, 等. 弹性球壳声散射对矢量传感器测向精度的影响[J]. 振动与冲击, 2014, 33(3):46-50.
[6] 休罗夫(著), 贾志富(译). 海洋矢量声学[M]. 北京:国防工业出版社, 2011.
[7] GORDIENKO V A (著), 贾志富(译). 声矢量——相位技术[M]. 北京:国防工业出版社, 2014.
[8] 杜功焕, 朱哲民, 龚秀芬. 声学基础[M]. 南京:南京大学出版社, 2001.
[9] REN Q Y, HERMAND J P. Acoustic interferometry for geoacoustic characterization in a soft-layered sediment environment[J]. Journal of the Acoustical Society of America, 2013, 133(1):82-93
[10] 林旺生, 梁国龙, 付进, 等. 浅海矢量声场干涉结构形成机理及试验研究[J]. 物理学报, 2013, 62(14):144301.
[11] SILVIA M T, RICHARDS R T. A theoretical and experimental investigation of low-frequency acoustic vecter sensors[C]//in Proc. of the OCEANS'02 Conf. Mts/IEEE, 2002(3):1886-1897.