消声器是船舶柴油机排气噪声控制的必要装置,其结构特点使得结构整体刚度偏低,在冲击环境下将产生较大的应力与形变,进而导致结构产生塑性变形或破损,这将对柴油机排气噪声抑制产生较大的影响。本文基于动态设计分析方法,以典型柴油机排气消声器为研究对象,进行冲击响应分析,并结合其应力与位移分布特点,从质量刚度分布优化与结构形式优化两方面出发,对其进行抗冲击优化研究,提出了一些抗冲击优化设计的方法。
The silencer is the necessary device for ship diesel exhaust noise control. Because of the low structural stiffness, the large displacement and stress will be happened in the shock environment. And then, the plastic deformation or damage will be generated, which will have a great influence on the exhaust noise control of diesel engines. In this paper, the common diesel silencer is selected as calculation model, and the shock response of structure is analyzed by dynamic design analysis method. According to the distribution of stain and displacement results, the shock resistance method of silencer structure is studied based on the optimization of mass distribution, stiffness distribution and structure form. Some methods of silencer shock resistance design are presented.
2018,40(6): 67-72 收稿日期:2017-10-17
DOI:10.3404/j.issn.1672-7649.2018.06.014
分类号:TK422;U664.1
作者简介:曹贻鹏(1980-),男,博士,副教授,研究方向为振动噪声控制
参考文献:
[1] Zhao Y L, He L, Lu Z Q. Application of DDAM on the computation of shock response of marine floating raft vibration-isolating system[J]. Engineering Mechanics, 2007, 24(4):515-521.
[2] 韩少燕. 舰用燃机抗冲击分析方法与模型简化研究[D]. 大连:大连理工大学, 2015.
[3] 张强, 何朝勋, 杨建军. 应用Ansys的DDAM方法进行舰船设备的抗冲击计算[J]. 舰船科学技术, 2011, 33(12):42-45. ZHANG Qiang, HE Chao-xun, YANG Jian-jun. The shock resistance research of warship equipment with DDAM using Ansys[J]. Ship Science and Technology, 2011.
[4] 孙宇鹏, 刘镇, 李伟军. 基于DDAM方法的船舶推进系统冲击响应仿真[J]. 船海工程, 2012, 41(5):153-155. SUN Yu-peng, LIU Zhen, LI Wei-jun. Simulation of Shock Resistance Capability of Ship Propulsion System Based on DDAM[J]. Ship & Ocean Engineering, 2012.
[5] 李晓明, 陈凤. 舰船浮筏隔振装置DDAM抗冲击计算[J]. 噪声与振动控制, 2012, 32(6):34-39. LI Xiao-ming, Chen Feng. Shock Response Computation of Vibration-isolating System of Marine Floating Raft Using DDAM[J]. Noise and Vibration Control, 2012, 32(6):34-39.
[6] Shin, Y. S. Ship shock modeling and simulation for far-field underwater explosion[J]. Computers & Structures, 2004, 82(23-26):2211-2219.
[7] LIANG C C, Yang M F, Tai Y S. Prediction of shock response for a quadrupod-mast using response spectrum analysis method[J]. Ocean Engineering, 2002, 29(8):887-914.
[8] 姚熊亮, 戴绍仕, 周其新, 等. 船体与设备一体化抗冲击分析[J]. 爆炸与冲击, 2009, 29(4):367-374. YAO Xiong-liang, DAI Shao-shi, ZHOU Qi-xin.Numerical experiment methods for ship hull and equipment integrated analysis on shock resistance of shipboard equipments[J]. Explosion and Shock Waves, 2009.
[9] 计晨, 汪玉, 赵建华, 等. 舰用柴油机抗冲击性能频域分析[J]. 振动与冲击, 2010, 29(11):171-176. JI Chen, WANG Yu, ZHAO Jian-hua. Frequency domain analysis of marine diesel anti-shock capability[J]. Journal of Vibration and Shock, 2010, 29(11):171-176.
[10] 陈海龙, 姚熊亮, 张阿漫, 等. 船用典型动力设备抗冲击性能评估研究[J]. 振动与冲击, 2009, 28(2):45-50. CHEN Hai-long, YAO Xiong-liang, ZHANG A-man. The shock resistance performance evaluation research on the typical dynamic device used in ships[J]. Journal of Vibration and Shock, 2009, 28(2):45-50.
[11] 王强, 李冬林. 推进电机端盖结构的抗冲击分析及优化[J]. 机电工程技术, 2016(1):78-81. WANG Qiang, LI Dong-lin. Shock Resistance Analysis and Optimization Design for the Cover of anImpelling Motor[J]. Mechanical and Electrical Engineering Technology, 2016(1):78-81.
[12] 耿超, 李倩茹, 唐杰, 等. 半主动控制浮筏隔振系统抗冲击特性的试验研究[J]. 机电工程, 2016, 33(8):934-938. GENG Chao, LI Qian-ru, TANG Jie. Experimental study on the shock resistance performanceof the semi-active floating raft[J]. Journal of Mechanical&Electrical Engineering, 2016, 33(8):934-938.
[13] 张相闻, 杨德庆, 吴广明. 综合考虑减振与抗冲击性能的复合基座设计方法[J]. 振动与冲击, 2016, 35(20):130-136. ZHANG Xiang-wen, YANG De-qing, WU Guang-ming. A vibration and shock isolation synthesis design method for hybrid base[J]. Journal of Vibration and Shock, 2016, 35(20):130-136.