针对还原剂NH3由喷射系统喷入烟道后与烟气混合途经烟道转弯处易形成大面积气体涡旋,流速差值较大这一问题,本文对烟道第2个拐角展开优化设计研究,旨在获得最优的速度场分布。具体的,基于斜型烟道设计了6种导流板的布置方式,分析系统内流速和压损变化,据此获得优化的布置方案。同时,搭建了实验平台,对相关优化布置方案进行实验验证。根据实验和模拟结果得出结论:在斜型烟道中,5块相同导流板一列布置时引流效果最好,此时出口流速差值最小,压损也最低。该研究结果为柴油机烟道设计提供了参考依据。
In response to the injection system of the NH3, which is injected into the flue, the gas is mixed along the flue, and it is easy to form a large gas vortex through the path of the flue, which is the problem of the high velocity difference. Flue is presented in this paper the second corner, in view of different flue structure and gas flow rate and composition of different parameters, such as, based on the diagonal type flue design six kinds of guide plate arrangement, changes in flow rate and pressure loss analysis system, to obtain optimized layout scheme. At the same time, the relevant optimization scheme is verified by experiment. According to the experiment and simulation results, it is concluded that in the inclined type flue, the flow of the same guide plate is the best when it is arranged in a column, and the lowest value of the exit velocity is the lowest, and the pressure loss is the lowest. The results of this study provide a reference for diesel engine flue design.
2018,40(6): 73-78 收稿日期:2018-01-03
DOI:10.3404/j.issn.1672-7649.2018.06.015
分类号:TK421
作者简介:杜军(1973-),男,博士,副教授,研究方向为超临界二氧化碳萃取纳米晶体技术、太阳能热利用、废弃物焚烧处理
参考文献:
[1] FENG J, ZHANG Z, WALLACE M B, et al. Discovery of alogliptin:a potent, selective, a bioavailable, and efficacious inhibitor of dipeptidyl peptidase IV[J]. Journal of Medicinal Chemistry, 2007, 50(10):2297-2230.
[2] KAMOCHI Y, KUDO T. The novel reduction of pyridine derivatives with samarium diiodide[J]. Heterocycles. 1993, 36(10):2383-2396.
[3] THANH D. B. N., LIM Y., KIM S. J, et al. Experiment and computational fluid dynamics (CFD) simulation of urea-based selective noncatalytic reduction (SNCR) in a pilotscale flow reactor. Energy & Fuels, 2008, 22(6):3864-3876.
[4] ADAMS B, SENIOR C. Improving design of SCR systems with CFD modeling[C]//Proceedings of the 2006 Environmental Controls Conference, Pittsburgh, PA, 2006:32-33.
[5] MI Jia, PITSKO D A, HASKEW T. CFD applications on selective catalytic NOx reduction (SCR) systems[C]//4th ASME-JSME Joint Fluids Engineering Conference. New York, USA, 2003:2139-2146.
[6] MORITA I, OGASAHARA T, FRANKLIN H N. Recent experience with hitachi plate type SCR catalyst. Tarrytown[C]//New York:The Institute of Clean Air Companies Forum'02, 2002:l-20.
[7] GALEN R. CFD Modeling of utility boiler components at ALSTOM[R]. http://www.Alstom.com.
[8] 韩占忠, 王敬, 兰小平. FLUENT-流体工程仿真计算实例与应用[M]. 北京:北京理工大学出版社, 2010.
[9] Amr Mahmoud Samy Elhefny. Aero-Thermo Structural Analysis and Flow Simulation of Liquid Rocket Engine Turbines[D]. Beijing university of aeronautics and astronautics. 2012. 1-53.
[10] SCR technology development for heavy fuel oil engines, Wartsila TECHNICAL JOURNAL 01, 2011.
[11] MOALLEMI F, BATLEY G. Chemical modeelling and measurements of the catalytic combustion of CH4/air mixtures on platinum and palladium catalysts[J]. Catalysts Today, 1999, 47:235-244.
[12] NEYERTZ C, VOLPE M, GIGOLA C. Methane combustion over Pd/r-Al2O3 and P d-VOx/r-Al2O3 catalysts[J]. Applied Catalysis, 2004, 277(1):137-145.
[13] ZENG Wen, XIE Mao-zhao, JIA Ming. Simulation of influences of catalytic combustion on the emissionsof HCCI engine[J]. Journal of Combustion Science and Technology, 2007, 13(1):55-63.
[14] 王福军. 计算流体动力学分析-CFD软件原理与应用[M]. 北京:清华大学出版社, 2004:7-254.
[15] ZHANG Li, QIU Yun, TANG Qiang. Numerical simulation research on the influence factors of mass transfer in micro-chamber[J]. Proceedings of the CSEE. 2007, 27(11):78-82.
[16] 陈太平. 300 MW煤粉锅炉SCR烟气脱硝装置数值模拟及结构优化[D]. 哈尔滨:哈尔滨工业大学, 2015.