发射筒是潜载导弹发射装置的重要组成部分,需要有足够的强度和刚度满足不同发射条件。本文结合实验数据,建立仿真模型,通过静力分析得到压力和结构载荷作用下的变形和应力分布;通过温度场分析得出筒上温度分布及温度载荷作用下应力应变情况;通过热力耦合场分析得到发射筒整体变形与应力分布。结果表明:在气压和结构载荷作用下发射筒最大变形1.5 mm,筒底应力125 MPa;温度场下温度自筒底段至筒体段阶梯分布,热应力作用下最大变形3.5 mm,最大应力317 MPa;热力耦合场下发射筒最大变形4.23 mm,最大应力384 MPa。3种工况下分析结果显示温度载荷是影响发射筒应力应变的主要因素,设计时在筒底圆弧面中心处需要加强。
Launchers are an important part of a submarine-launched missile launch device. Launchers must have enough strength and stiffness to meet different launch conditions. This article combines experimental date, ANSYSWORKBENCH software is used to establish simulation model. According to the simulation result of deformation and strength of the operating condition, we could get the deformation of the structure, the launcher are analyzed in thermal, the temperature distribution on the launcher was obtained by thermal analysis, according to the analysis of thermal coupling field, the overall deformation and stress distribution of the launcher were obtained. The simulation result shows:under the pressure and structural loads, the maximum deformation of the launcher was 1.5 mm, the stress was 125 MPa; under the action of temperature load, the deformation of the launch tube flange can reach 3.5 mm, the stress can reach 385 MPa; under the action of thermal coupling field, the maximum deformation of the launcher can reach 4.23 mm. The result of three condition analysis showed that the temperature load is the main factor affecting the stress and strain of the launcher. The center of the launcher bottom are needed to be strengthened to prevent damage.
2018,40(6): 148-151 收稿日期:2018-01-12
DOI:10.3404/j.issn.1672-7649.2018.06.031
分类号:U674.7+03.54
作者简介:郭敬彬(1988-),男,助理工程师,研究方向为垂直减震装置和发射筒设计
参考文献:
[1] 倪火才. 潜地弹道导弹发射装置构造[M]. 哈尔滨:哈尔滨工程大学出版社, 1998.
[2] 李兵, 何正嘉, 陈雪峰. ANSYS Workbench设计、仿真与优化(第二版)[M], 北京:清华大学出版社, 2011.
[3] 韩罗峰, 郭敬彬, 乔社宁, 等. 离心压缩机水压仿真及试验研究[J]. 流体机械, 2014, 42(7):5-9. HAN Luo-feng, GUO Jing-bin, QIAO She-ning. Study of Hydraulic Simulation and Test for Centrifugal Compressor[J]. Fluid Machinery, 2014, 42(7):5-9.
[4] 叶文, 赵建忠. 舰载环境对导弹武器装备可靠性分析的影响分析及对策[J]. 质量与可靠性, 2014(2):5-9. YE wen, ZHAO Jian-zhong. Analysis of the impact of Shipborne Environment on Reliability Analysis of Missile Weaponry and Countermeasures[J]. Quality and Reliability, 2014(2):5-9.
[5] 林琳, 张熙川. MIL-STD-810F低温试验方法研究[J]. 电子产品可靠性与环境试验, 2010, 28(2):5-8. LIN Lin, ZHANG Xi-chuan. Research on the Low Temperature Test in MIL-STD-810F[J]. Electronic Product Reliability and Environmental Testing, 2010, 28(2):5-8.
[6] 刘文一, 焦冀光. 舰载环境对导弹武器装备可靠性的影响分析及对策[J]. 质量与可靠性, 2014(2):5-9. LIU Wen-yi, JIAO Ji-guang. Analysis of the Impact of Shipborne Environment on the Reliability of Missile Weaponry and Its Countermeasures[J]. Quality and Reliability, 2014(2):5-9.
[7] 冯国增, 冯拥军, 许向前. 救生艇用柴油机气缸套温度场的计算与分析[J]. 舰船科学技术, 2009, 31(4):65-67. FENG Guo-zeng, FENG Yong-jun, XU Xiang-qian. Calculation and Analysis of Temperature Field of Cylinder Liner for Lifeboat Diesel Engine[J]. Ship science and technology, 2009, 31(4):65-67.
[8] DEF STAN 00-35, General Specification for Aircraft Gas Turbine Engines[S].