国际海事组织(IMO)第2代完整稳性规则预计将于2019年定稿,目前仍处于大量样船的计算与完善阶段。处于横风横浪联合作用下产生大幅横摇甚至倾覆的瘫船状态,被公认是相对危险的稳性失效模式。因此基于瘫船稳性第2层衡准,针对2艘集装箱船,利用分段线性化方法得到横摇运动方程的解析解,并据此进行倾覆概率的计算。在样船计算的基础上同局部线性化结果进行对比,并对影响倾覆概率的敏感性因素进行分析:延长暴露时间、高峰宽频的波浪谱、选择GZ曲线顶点为分段分界点等均能提高衡准的安全裕度。在此计算分析的基础上为完善IMO瘫船稳性衡准的制定提供技术支撑。
IMO (International Maritime Organization) second generation intact stability criteria are expected to be finalized in 2019, while nowadays, numbers of sample ships are calculated for its perfection. Dead-ship condition, which means a ship exposed to the combination of beam wave and wind will roll intensely and even capsize, is recognized as a relatively dangerous stability failure mode. Targeting at two containerships, this paper solves the rolling equation and gets its analytical results by means of piecewise linearization method based on the Level 2's criterion of dead-ship stability, as a result, the capsizing probability can be calculated. Then comparison with local linearization method is conducted based on the sample ships' analysis. The following three sensible factors can impact the capsizing probability significantly:the extended exposure time, choosing wave spectra with high peak and broad frequency range, choosing the peak of GZ curve as demarcation point are all able to raise the safety margin. The calculation and analysis mentioned above are capable of providing the technical supports for the constitution's improvement of IMO dead-ship's stability criteria.
2018,40(7): 22-28 收稿日期:2017-01-13
DOI:10.3404/j.issn.1672-7649.2018.07.005
分类号:U661.32
基金项目:财政部、教育部重大科研专项资助项目(KSHIP)(GKZY010004);国家自然科学基金资助项目(5157914)
作者简介:马骋远(1992-),男,硕士研究生,研究方向为波浪中船舶稳性与安全性设计
参考文献:
[1] IMO. SLF 55-WP.3-Report of the Working Group (Part 1) (Working Group)[R].
[2] 王志荣等. 国际海事组织2008年国际完整稳性规则(2008年IS规则)及其解释性说明[M]. 北京:人民交通出版社, 2009:5-7.
[3] IMO SLF 52/INF.2, ANNEX 3. Higher level Dynamic Stability Assessment for Dead-Ship Condition[C]// Italy, 2009.
[4] IMO SLF 52/INF.2, ANNEX 2. Draft Vulnerability Criteria and Their Sample Calculation[C]//Japan, 2009.
[5] 马坤, 刘飞, 李楷. 瘫船稳性薄弱性评估样船计算分析[C]//2014年全国船舶稳性学术研讨会文集. 无锡:中国船舶科学研究中心, 2014:147-153.MA Kun, LIU Fei, LI Kai. Dead-ship stability vulnerability's evaluation and sample ships' analysis[C]//2014 National symposium on ship stability. Wuxi:CSSRC, 2014:147-153.
[6] 曾柯, 顾民, 鲁江, 王田华. IMO船舶瘫船稳性倾覆概率研究[J]. 中国造船, 2015, 56(4):17-24.ZENG Ke, GU Min, LU Jiang, et al. Study on IMO capsizing probability under dead-ship condition[J]. Shipbuilding of China, 2015, 56(4):17-24.
[7] 曾柯. 船舶瘫船稳性衡准技术研究[D]. 北京:中国舰船研究院, 2015.ZENG Ke. A study on criteria of dead-ship stability[D]. Beijing:China Ship Research Institute, 2015.
[8] IMO SLF 51~WP2. Revision of the Intact Stability Code[C]//Report of the Working Group (Part 1). 2008:23-27.
[9] IMO SLF 54/INF. 12, ANNEX 19. Review of Draft Level 2 and 3 on Stability under Dead-Ship Condition[C]//Japan, 2011.
[10] KAWAHARA Y, MAEKAWA K, IKEDA Y. A simple prediction formula of roll damping of conventional cargo ships on the basis of Ikeda's method and its limitation[C]//Proceedings of the 10th International Conference on Stability of Ships and Ocean Vehicles. Netherlands:Springer, 2009:387-398.
[11] BELENKY V L. A capsizing probability computation method[J]. Journal of Ship Research, 1993, 37(3):200-207.
[12] ISKANDAR B H, UMEDA N, HAMAMOTO M. Capsizing probability of an Indonesian RoRo passenger ship in irregular beam seas(second report)[J]. Journal of the Society of Naval Architects of Japan, 2001, 189:31-37.
[13] UMEDA N, ISKANDAR B H, HAMAMOTO H, et al. Comparison of european and asian trawlers-stability in seaways[C]//Proceedings of Asia Pacific Workshop on Marine Hydrodynamics, Kobe, 2002:79-84.
[14] PAROKA D, UMEDA N. Piece-wise linear approach for calculating probability of roll angle exceeding critical value in beam seas[C]//Proceedings of Asia Pacific Workshop on Marine Hydrodynamics, 2006(3):181-184.
[15] PAROKA D, OHKURA Y, UMEDA N. Analytical prediction of capsizing probability of a ship in beam wind and waves[J]. Journal of ship research, 2006, 50(2):187-195.
[16] TASAI F, TAKAGI Y. Response theory and calculation method in regular waves[C]//Symposium on Shipbuilding Society of Japan, 1969.
[17] IMO SDC 1/INF. 6(Submitted by Italy and Japan). Vulnerability assessment for dead-ship stability failure mode (Development of second-generation intact stability criteria)[R]. Italy, 2013.
[18] PRICE W G, BISHOP R E D. Probabilistic theory of ship dynamics[R]. London, UK:Chapman and Hall Ltd., 1974.
[19] 李积德. 船舶耐波性[M]. 哈尔滨:哈尔滨工程大学出版社, 2007:40-55.LI Ji-de. Seakeeping of ships[M]. Harbin:Harbin Engineering University Press, 2007:40-55.