本文开展了含大开口结构的双层板架模型轴向受压稳定性实验,采用非线性有限元软件ABAQUS,建立了甲板大开口双层板架模型,开展了该模型在轴向压缩载荷作用下的屈曲失效过程的数值计算分析,数值计算结果和试验吻合较好。在此基础上,根据甲板结构屈曲失效诱因,将双层板架模型简化为单层板架局部模型,并分析了简化模型在轴向载荷作用下的屈曲破坏路径与极限承载能力。结果表明,简化后的加筋板模型能有效模拟双层板架模型的失效模式,为大开口甲板板架稳定性分析提供了新思路。
The axial compression stability experiment of the double-deck model with a large open structure was carried out in this paper. The non-linear finite element software ABAQUS was used to establish the double deck model with large open deck. The nonlinear finite element calculation was conducted under the axial compressive loading. The numerical results agree well with the experimental results. On this basis, according to the buckling failure of the deck structure, the double-deck model is simplified; the buckling failure path and ultimate strength under the axial load are compared between the single-deck frame and the stiffened plate model. The results show that the simplified stiffened model can simulate the failure mode of the double model effectively, and provide a new idea for the stability analysis of large open deck frame.
2018,40(7): 29-35 收稿日期:2018-03-07
DOI:10.3404/j.issn.1672-7649.2018.07.006
分类号:U663.6
作者简介:邢维升(1977-),男,工程师,研究方向为船舶总体与结构
参考文献:
[1] 吴卫国, 袁天, 孔祥韶. 船舶甲板结构稳定性实验与数值仿真研究[J]. 船舶力学, 2017, z(1):472-479.
[2] PAIK J K, SEO J K. Nonlinear finite element method models for ultimate strength analysis of steel stiffened-plate structures under combined biaxial compression and lateral pressure actions-Part I:Plate elements[J]. Thin-Walled Structures, 2009, 47(8-9):1008-1017.
[3] PAIK J K, SEO J K. Nonlinear finite element method models for ultimate strength analysis of steel stiffened-plate structures under combined biaxial compression and lateral pressure actions-Part Ⅱ:Stiffened panels[J]. Thin-Walled Structures, 2009, 47(8-9):998-1007.
[4] PAIK J K, KIM B J, SEO J K. Methods for ultimate limit state assessment of ships and ship-shaped offshore structures:Part I-Unstiffened plates[J]. Ocean Engineering, 2008, 35(2):261-270.
[5] PAIK J K, KIM B J, SEO J K. Methods for ultimate limit state assessment of ships and ship-shaped offshore structures:Part Ⅱ stiffened panels[J]. Ocean Engineering, 2008, 35(2):271-280.
[6] FUJIKUBO M, YAO T, KHEDMATI M R, et al. Estimation of ultimate strength of continuous stiffened panel under combined transverse thrust and lateral pressure Part 1:Continuous plate[J]. Marine Structures, 2005, 18(5-6):383-410.
[7] FUJIKUBO M, HARADA M, YAO T, et al. Estimation of ultimate strength of continuous stiffened panel under combined transverse thrust and lateral pressure Part 2:Continuous stiffened panel[J]. Marine Structures, 2005, 18(5-6):411-427.
[8] XU M C, SOARES C G. Comparisons of calculations with experiments on the ultimate strength of wide stiffened panels[J]. Marine Structures, 2013, 31(Supplement C):82-101.
[9] XU M C, YANAGIHARA D, FUJIKUBO M, et al. Influence of boundary conditions on the collapse behaviour of stiffened panels under combined loads[J]. Marine structures, 2013, 34:205-225.
[10] XU M, SOARES C G. Assessment of the ultimate strength of narrow stiffened panel test specimens[J]. Thin-Walled Structures, 2012, 55:11-21.
[11] 张宇力, 曾广武, 段洪, 等. 大开口对船舶板架稳定性和极限承载力的影响[J]. 华中科技大学学报(自然科学版), 2002(5):56-64.
[12] 周于程, 郑绍文, 刘均, 等. 基于舱段模型的大开口甲板结构稳定性分析与设计[J]. 中国舰船研究, 2014(2):37-41, 54.
[13] KWON Y B, PARK H S. Compression tests of longitudinally stiffened plates undergoing distortional buckling[J]. Journal of Constructional Steel Research, 2011, 67(8):1212-1224.
[14] 王保森, 董胜, 冯亮, 等. 加筋板极限强度数值计算影响因素及敏感分析[J]. 中国海洋大学学报(自然科学版), 2018(2):105-112.
[15] PAIK J K, THAYAMBALLI A K, LEE J M. Effect of initial deflection shape on the ultimate strength behavior of welded steel plates under biaxial compressive loads[J]. Journal of ship research, 2004, 48(1):45-60.
[16] 初艳玲. 考虑初始缺陷的结构非线性屈曲分析与应用[J]. 中国造船, 2010(3):119-127.