本文针对一种新型水下张力腿平台的液压驱动系统,开展了建模和控制技术研究。首先,介绍水下张力腿平台及液压驱动系统的功能及组成;其次,基于液压系统动力学模型和水下张力腿平台动力学模型,建立了包含综合不确定性且上界未知的关节空间驱动控制模型;再次,结合液压驱动系统控制要求及系统动力学模型特性,完成了自适应反演滑模控制器设计;最后,利用仿真工具,对本文研究内容的有效性进行验证。仿真结果表明,自适应反演滑模控制器的稳态精度高,抗干扰能力强,适用于液压驱动系统速度控制。该结果证明了本文的建模及控制技术研究合理且有效,为水下张力腿平台的有效控制奠定了基础,且可为同类产品的研究提供借鉴。
Modeling and control of hydraulic driving system is carried out for a new underwater tension leg platform. Firstly, the function and composition of underwater tension leg platform and hydraulic driving system are introduced; Secondly, joint-space driven control model containing comprehensive uncertainties with unknown upper bound is established, based on dynamic model of hydraulic system and underwater tension leg platform; Thirdly, according to the control requirements and system characteristics of hydraulic drive system, an adaptive backstepping sliding model controller is designed; Finally, the effectiveness of our research is verified through simulation. The simulation results show that adaptive backstepping sliding model controller has high steady-state precision and strong anti-interference ability, therefore, it's suitable for hydraulic drive system speed control. The results proved that the modeling and control research is reasonable and effective, which lays the foundation for the effective control of the underwater tension leg platform and can provide reference for the research of similar products.
2018,40(7): 63-72 收稿日期:2017-09-13
DOI:10.3404/j.issn.1672-7649.2018.07.012
分类号:P732
作者简介:徐侃(1990-),女,硕士,工程师,研究方向为潜艇操纵控制技术、水下机器人技术
参考文献:
[1] XIA Y K, XU G H, XU K, et al. Dynamics and control of underwater tension leg platform for diving and leveling[J]. Ocean Engineering, 2015(109):454-478.
[2] ABDELLATIF H, HEIMANN B. Computational Efficient Inverse Dynamics of 6-DOF Fully Parallel Manipulators by Using the Lagrangian Formalism[J]. Mechanism and Machine Theory, 2009, 44(1):192-207.
[3] ZHANG C D, SONG S M. An Efficient Method for Inverse Dynamics of Manipulators based on the Virtual Work Principle[J]. Journal of Robotic Systems, 2007, 10(5):605-627.
[4] AZIZI M R, NADERI D. Dynamic modeling and trajectory planning for a mobile spherical robot with a 3D of inner mechanism[J]. Mechanism and machine theory, 2013, 64(1):251-261.
[5] GHERMAN B, PISLA D, VAIDA C, et al. Development of inverse dynamic model for a surgical hybrid parallel robot with equivalent lumped masses[J]. Robotics and Computer-Integrated Manufacturing, 2012, 28(3):402-415.
[6] 张虎, 郭志飞, 徐安林. 3-PSS并联机构动力学分析与仿真[J]. 机床与液压, 2016, 44(21):21-25.
[7] 张国伟, 宋伟刚. 并联机器人动力学问题的Kane方法[J]. 系统仿真学报, 2004, 16(7):1386-1391.
[8] 李永泉, 宋肇经, 郭菲等. 多能域过约束并联机器人系统动力学建模方法[J]. 机械工程学报, 2016, 52(21):17-25.
[9] 周洪. 6PUS-UPU冗余驱动并联机器人控制技术研究[D].秦皇岛:燕山大学, 2014.
[10] ZHANG X Y, HAN Y T, BAI T, et al. H∞ controller design using LMIs for high-speed underwater vehicles in presence of uncertainties and disturbances[J]. Ocean Engineering, 2015(104):359-369.
[11] 徐超, 刘刚, 徐国华, 等. 基于泵控液压舵机的潜艇深度及纵倾控制[J]. 中国舰船研究, 2017, 12(2):116-123.
[12] CHEN Y, ZHANG R M, ZHAO X Y, et al. Adaptive fuzzy inverse trajectory tracking control of underactuated underwater vehicle with uncertainties[J]. Ocean Engineering, 2016(121):123-133.
[13] FAYZE F S. Adaptive hybrid control system using a recurrent RBFN-based self-evolving fuzzy-neural-network for PMSM servo drives[J]. Appl. Soft Comput, 2014(21):509-532.
[14] LI Y, WEI C, WU Q, et al. Study of 3 dimension trajectory tracking of underactuated autonomous underwater vehicle[J]. Ocean Engineering, 2015(105):270-274.
[15] 颜玉娇. 绳索牵引并联机器人的动力学建模与控制研究[D].合肥:中国科学技术大学, 2015.
[16] 郭崇滨. 并联机器人多目标协同智能控制研究[D].上海:东华大学, 2013.
[17] 牛雪梅. 新型3-DOF驱动冗余并联机构动力学建模及其滑模控制研究[D]. 镇江:江苏大学, 2014.
[18] 常同立. 液压控制系统[M]. 北京:清华大学出版社, 2014.
[19] 乔继红. 反演控制方法与实现[M]. 北京:机械工业出版社, 2012.
[20] 刘金琨. 滑模变结构控制MATLAB仿真[M]. 北京:清华大学出版社, 2005.