翼型结构蒙皮通常可采用局部加厚设计以提高剖面惯性矩,从而获得较优的强度刚度性能。本文根据剖面惯性矩和面积的比值,提出比惯性矩概念,并对其计算公式与主要影响因素进行推导和分析;而后对比惯性矩的变化规律进行研究,给出了基于最大比惯性矩的蒙皮局部加厚优化方法,并将船舶常用舵蒙皮的最优加厚区间绘制成图谱;最后通过一算例阐述了该图谱的使用方法,并验证了该方法的有效性。
In order to improve cross-sectional inertia moment and obtain optimum strength and stiffness characteristics, airfoil structure is usually designed with local thickening skin. The area-inertia moment ratio is proposed as a concept, and the calculating formulas is derived as well as the main influencing factors is analyzed. Then, variety law of the area-inertia moment ratio is studied. Based on the principle of maximum moment of inertia, the optimization method for thickness of airfoil skin is proposed. The range of optimal thickened section is determined, and drawn into curves for common ship rudder profiles. Finally, a numerical example describes the use of the curves, and verifies the effectiveness of the method.
2018,40(8): 33-36,132 收稿日期:2017-01-11
DOI:10.3404/j.issn.1672-7649.2018.08.006
分类号:U663
基金项目:国家青年科学基金资助项目(51609252)
作者简介:刘令(1986-),男,博士,工程师,研究方向为船用复合材料及其应用
参考文献:
[1] 胡燕平, 戴巨川, 刘德顺. 大型风力机叶片研究现状与发展趋势[J]. 机械工程学报, 2013, 49(20):140-147.
[2] 冯消冰, 孙树力. 2 MW风机叶片梁帽与腹板的强度优化设计[J]. 合成材料老化与应用, 2015, 44(2):21-27.
[3] VITALE A J, ROSSI A P. Computational method for the design of wind turbine blades[J]. International Journal of Hydrogen Energy, 2008, 33(13):3466-3470.
[4] 李丹, 姚卫星. GFRP风机叶片结构设计的二级优化方法[J]. 南京航天航空大学学报, 2011, 43(5):598-601.
[5] 廖猜猜, 王建礼, 石可重, 等. 风力叶片截面刚度优化设计[J]. 工程热物理学报, 2010, 31(7):1127-1130.
[6] CAI Xin, ZHU Jie, PAN Pan, et al. Structural optimization design of horizontal-axis wind turbine blades using a particle swarm optimization algorithm and finite element method[J]. Energies, 2012, 5(11):4683-4696.
[7] 梅琴生. 船用舵[M]. 北京:人民交通出版社, 1981.
[8] QUYANG X, YU X Q, WANG Y. Flutter analysis for wing structure using finite element modeling with equivalent stiffness[J]. Journal of Vibroengineering, 2014, 16(3):1483-1493.
[9] 王宇, 欧阳星, 余雄庆. 采用等效有限元模型的复合材料机翼结构优化[J]. 复合材料学报, 2015, 32(5):1487-1494.