为研究大气边界层对舰船空气尾流特性的影响,本文以典型驱护舰简化模型SFS2为研究对象,采用计算流体力学仿真(CFD)方法模拟了均匀来流条件和2种大气边界层条件下的尾流。Ansys Fluent的计算结果表明大气边界层中的速度梯度减小了入口处气流流动动能的输入,湍流特性中湍动能的存在又增加了能量的输入,故同时考虑速度梯度和湍流特性大气边界层条件时,预测的流场物理量数值位于均匀来流和速度梯度条件下预测值之间。本文研究成果表明在实际研究舰船空气尾流时大气边界层条件不可忽略。
In order to research the influence of atmospheric boundary layer (ABL) existing above the ocean surface on the ship airwake, the typical simplified frigate shape SFS2 ship airwake in uniform in? ow condition and two different ABL conditions are simulated using Ansys Fluent. The research concluded that the speed gradient in the ABL decreases flow kinetic energy of entrance, while the turbulence kinetic energy increases the energy input, so the velocity magnitude predicted with both velocity gradient and the turbulence characteristic is between that with uniform inflow and single velocity gradient. The results demonstrate that ABL exerts an unneglected effect on the ship airwake.
2018,40(8): 37-40 收稿日期:2018-04-18
DOI:10.3404/j.issn.1672-7649.2018.08.007
分类号:X51;U661
作者简介:王金玲(1988-),女,工程师,主要从事舰船与飞行器空气流场研究、舰载机起降安全研究
参考文献:
[1] TAI T C, CARICO D. Simulation of DD-963 ship airwake by navier-stokes method[J], Journal of Aircraft, 32(6), 1995:1399-1401.
[2] LIU J, LONG L N, MODI A. Higher order accurate solutions of ship airwake flow fields using parallel computer[C]//American Helicopter Society 54th Ann ual Forum. Washington, 1998:1-13.
[3] SYMS G F. Numerical simulation of frigate airwakes[J]. International Journal of Computational Fluid Dynamics, 2004, 18(2):199-207.
[4] SEZER-UZOL N, SHARMA A, LONG L N. Computational fluid dynamics simulations of ship airwake[J]. Journal of Aerospace Engineering, 2005, 219(5):369-392.
[5] YESILEL H, EDIS F O. Ship airwake analysis by CFD methods[C]//AIP Conference Proceedings. Corfu, 2007:674-677.
[6] ZHANG F, XU H. BALL N G. Numerical simulation of unsteady flow over SFS2 ship model[C]//47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition. Orlando, 2009:1-10.
[7] POLSKY S A, GHEE T A, BUTLER J, et al. Application of CFD to anemometer position evaluation:a feasibility study[C]//29th AIAA Applied Aerodynamics Conference, Honolulu, AIAA, 2011:1-14.
[8] QUON E W. Data transfer strategies for overset and hybrid computaional methods[D]. Georgia:Georgia Institute of Technology, 2014.
[9] POLSKY S A. CFD prediction of airwake flowfields for ships experiencing beam winds[C]//21st Applied Aerodynamics Conference. Orlando, 2003:1-12.
[10] MURRAY R. S, ANIL K, PINHAS B T, et al. Validation of computational ship air wakes for a naval research vessel[C]//American Institute of Aeronautics and Astronautics. Orlando, 2013:1-25.
[11] RAHIMPOUR, P OSHKAI. Experimental investigation of airflow over helicopter platform of a polar icebreaker[C]//2015 IEEE. Orlando, 2015:1-8.
[12] 黄斌, 徐国华, 史勇杰. 舰船飞行甲板真实流场特性试验研究[J]. 航空学报, 2001, 22(6):500-504.
[13] 王祎. 载机舰在风、浪中的气流场数值模拟研究[D]. 哈尔滨:哈尔滨工程大学, 2010.