船舶喷射推进装置经历了早期的喷射推进、液压推进、间歇性喷水推进、底板式喷水推进等演变,目前作为一种高效绿色的推进方式,在高性能舰艇上获得普遍应用。本文研究了喷气推进装置的运动状态和特性,基于喷气推进装置的运动学和动力学模型,对其驱动和控制的关键技术进行了深入有效的分析,以一艘快艇为研究对象,设计了适合于快艇喷气推进装置的控制系统和驱动系统,利用数值水池进行推进性能分析,本研究对高性能舰艇推进技术发展及应用具有一定参考价值。
Marine propulsion plant experienced early jet system, hydraulic pumps, energy burst systems, bottom-mounted units, such as evolution, as a kind of highly effective green feed mode at present, are widely applied in high-performance battleships. This paper studies the motion state and characteristics of the jet propulsion, the kinematics and dynamics model based on jet propulsion device, its drive and control the key technology of the in-depth analysis of effective, as the research object to a boat, and design suitable for the boat jet propulsion device of control system and drive system, propulsion performance analysis using numerical tank, the research has certain reference value for the development and application of high-performance battleships propulsion technology.
2018,40(8): 50-54 收稿日期:2016-12-12
DOI:10.3404/j.issn.1672-7649.2018.08.010
分类号:U674.91
作者简介:张东方(1981-),男,硕士,讲师,甲类大管轮,研究方向为船舶与海洋工程
参考文献:
[1] POY SM. The evolution of the modern water jet marine propulsion unit[C]//International Conference on Water jet Propulsion I, 1994.
[2] ALLISON J. Marine water jet propulsion[J]. SNAME Transaction, 1993, 101:275-335.
[3] LOOIJMANS K N H, etc. The acoustic source strength of Water jet installations[C]//PRADS 98, 1998:935-941.
[4] 万霖, 何凌燕, 黄晓峰.船舶大气污染排放的研究进展[J].环境科学与技术, 2013, 36(5):57-62. WAN Lin, HE Ling-yan, HUANG Xiao-feng. The research progress of ship emissions[J]. environmental science and technology, 2013, 36(5):57-62.
[5] 张文治.喷水推进和螺旋桨推进的比较[J].中国造船,1959(1):18-24. ZHANG Wenzhi. Comparison of water jet propulsion and propeller propulsion[J]. shipbuilding of China, 1959(1):18-24.
[6] 刘承江, 王永生, 张志宏, 等. 流场控制体对喷水推进器性能预报影响的研究[J]. 船舶力学, 2010, 14(10):1117-1121. LIU Chengjiang, WANG Yongsheng, ZHANG Zhihong, et al. Study on the influence of flow control body on the performance prediction of water jet propulsion[J]. ship mechanics, 2010,14(10):1117-1121.
[7] 刘承江, 王永生. 混流式喷水推进器空化性能数值分析[J]. 机械工程学报, 2009, 45(12):76-83. LIU Chengjiang, WANG Yongsheng. Numerical analysis of cavitation performance of mixed flow water jet propeller[J]. Chinese Journal of mechanical engineering, 2009,45(12):76-83.
[8] TERWISGA V. Report of the specialist committee on validation of waterjet test procedures to the 24th ITTC[R]. Edinburgh, UK:ITTC, 2005:471-508.
[9] DING Jingming, WANG Yongsheng, ZHANG Zhizhong, et al.Rsearch on flow loss of inlet duct of marine waterjets[J]Journal of Shanghai Jiaotong University(Science),2010,15(2):158-162.
[10] BULTEN N. Numercial analysis of a waterjet propulsion system[D]. Edinhoven, The Netherlans:The Edinhoven University of Technology, 2006.
[11] 李伟, 李国辉, 杜鹏, 杨智博, 杨嘉祥.船用喷气式模型结构设计[J]. 哈尔滨理工大学学报2005, 10(1):66-68. LI Wei, LI Guohui, DU Peng, YANG Zhibo, YANG Jiaxiang. Structural design of marine jet model[J]. Journal of Harbin University of Science and Technology, 2005, (1):66-68.
[12] 倪少玲, 王少新.船舶阻力教学实验的计算机模拟与仿真[J].实验技术与管理.2003,20(6)41-48. Ni Shaoling, WANG Shaoxin. Computer simulation and Simulation of ship resistance experiment[J]. experimental technology and management.2003,20(6) 41-48.
[13] 李伟.船用喷气式推进器结构原型及其动力特性[D]. 哈尔滨:哈尔滨理工大学, 2005.
[14] 程守洙, 江之永. 普通物理学[M]. 高等教育出版社. 1998:337-390.