阻塞效应修正是提高空泡水筒水动力测量结果精度的重要措施。本文以上海交通大学新空泡水筒为研究对象,采用粘势耦合方法预报某7叶螺旋桨盘面处的实效伴流场,以此修正螺旋桨进速实现空泡水筒的阻塞效应修正。首先采用面元法对螺旋桨进行敞水预报,建立体积力模型将其力场插值到RANS网格中进行计算,得到桨盘面的实效伴流场。然后根据实效伴流分数归纳进速修正公式对螺旋桨推力和扭矩曲线进行修正,从而实现了空泡水筒到敞水结果的阻塞效应修正。结果表明,空泡水筒中计算的推力和扭矩曲线修正后与敞水中的计算吻合良好。
The blockage effect correction is an important aspect to improve the hydrodynamic measurement accuracy of the cavitation tunnel. In this paper, a viscous/potential coupling method is carried out to predict the effective wake field of a seven-bladed propeller and to correct the blockage effect of the new cavitation tunnel of Shanghai Jiao Tong University. Firstly, a potential flow based panel method is utilized to predict the open water performance of the propeller. Then the predicted force field is interpolated to RANS model to evaluate the effective wake field at the propeller plane. The open water characteristic curves are adjusted by using the predicted effective wake fraction. The presented approach realizes blockage effect correction from cavitation tunnel to open water. The results show that the corrected thrust and torque curves in the cavitation tunnel are in good agreement with those calculated in the open water.
2018,40(9): 21-26 收稿日期:2017-10-15
DOI:10.3404/j.issn.1672-7649.2018.09.004
分类号:U664.33
作者简介:龚正琦(1993-),男,硕士研究生,研究方向为船舶推进器水动力学
参考文献:
[1] HERRIOT J G. Blockage corrections for three-dimensional-flow closed-throat wind tunnels, with consideration of the effect of compressibility[R]. Ames Aeronautical Laboratory Moffett Field, Calif, 1947.
[2] HACKETT J E, WILSDEN D J, LILLEY D E. Estimation of tunnel blockage from wall pressure signatures:a review and data correlation[R]. NASA CR 15224, 1979.
[3] ROSS I, ALTMAN A. Wind tunnel blockage corrections:review and application to savonius vertical-axis wind turbines[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(5):523-538
[4] CHEN T Y, LIOU L R. Blockage corrections in wind tunnel tests of small horizontal-axis wind turbines[J]. Experimental Thermal and Fluid Science, 2011, 35(3):565-569
[5] 庞加斌, 刘晓晖. 汽车风洞试验中的雷诺数、阻塞和边界层效应问题综述[J]. 汽车工程, 2009, 07:609-615
[6] 王磊, 梁枢果. 阻塞效应对高层建筑风洞试验的影响分析[J]. 实验力学, 2013, 02:261-268
[7] 黄剑, 顾明. 群体高层建筑模型风洞试验阻塞效应的修正[J]. 同济大学学报:自然科学版, 2017, 45(1):31-38
[8] 谢克振, 周占群. 水池阻塞效应的试验探讨[J]. 上海船舶运输科学研究所学报, 1978(2):1-27 XIE Ke-zhen, ZHOUZhan-qun. Experimental study on blocking effect of water pool[J]. Journal of Shanghai Ship and Shipping Research Institute, 1978(2):1-27
[9] 赵大刚, 郭春雨, 阚梓. 拖曳水池阻塞效应对不同船型影响数值研究[J]. 大连理工大学学报, 2016, 56(6):575-583 ZHAO Da-gang, GUO Chun-yu, KAN Zi. Numerical study of influence of blockage effect of towing tank on different ship types[J]. Journal of Dalian University of Technology, 2016, 56(6):575-583
[10] BAHAJ A S, MOLLAND A F, CHAPLIN J R, et al. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank[J]. Renewable energy, 2007, 32(3):407-426
[11] 黄国燕, 李良伟, 赵耀, 等. 基于CFD方法的螺旋桨试验水筒的筒壁影响[J]. 舰船科学技术, 2011, 33(5):19-23 HUANG Guo-yan, LI Liang-wei, ZHAO Yao, et al. The wall effect of simple propeller water tank by CFD[J]. Ship Science and Technology, 2011, 33(5):19-23
[12] 周景军, 李荣融. 通气超空泡水洞试验阻塞效应影响研究[J]. 水动力学研究与进展A辑, 2014, 03:361-366 ZHOU Jing-jun, LI Rong-rong. Research on the influence of blockage in water tunnel for ventilated supercavitating flow[J]. Chinese Journal of Hydrodynamics, 2014, 03:361-366
[13] 谭廷寿. 面元法预报螺旋桨水动力性能[J]. 武汉交通科技大学学报, 1997, 21(5):534-541 TAN Ting-shou. Prediction ofHydrodynamic performance on propeller by surface panel method[J]. Journal of Wuhan Transportation University, 1997, 21(5):534-541
[14] 苏玉民, 黄胜. 用面元法预报船舶螺旋桨的水动力性能[J]. 哈尔滨工程大学学报, 2001, 22(2):1-5 SU Yun-min, HUANG Sheng. Prediction of hydrodynamic performance of marine propellers by surface panel method[J]. Journal of Harbin Engineering University, 2001, 22(2):1-5
[15] 董世汤, 唐登海, 周伟新. CSSRC的螺旋桨定常面元法[J]. 船舶力学, 2005, 9(5):46-60 DONG Shi-tang, TANG Deng-hai, ZHOU Wen-xin. Panel method of CSSRC for propeller in steady flows[J]. Journal of Ship Mechanics, 2005, 9(5):46-60
[16] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605
[17] SÁNCHEZ-CAJA A, PYLKKÄNEN J V. Prediction of effective wake at model and full scale using a RANS code with an actuator disk model[C]//2nd International Conference on Maritime Research and Transportation, Ischia, Italy. 2007:28-30.
[18] STARKE A R, BOSSCHERS J. Analysis of scale effects in ship powering performance using a hybrid RANS-BEM approach[C]//29th Symposium on Naval Hydrodynamics, Gothenburg, Sweden. 2012.
[19] TIAN Y, JEON C H, KINNAS S A. On the accurate calculation of effective wake/application to ducted propellers[J]. Journal of Ship Research, 2014, 58(2):70-82
[20] RAO Z, YANG C. Numerical prediction of effective wake field for a submarine based on a hybrid approach and an RBF interpolation[J]. Journal of Hydrodynamics, Ser. B, 2017, 29(4):691-701